CONTENTS

PREFACE vii

LIST OF TABLES xvii

1 INTRODUCTION 1

- 1-1 What Is Mechanical Design?
- 1-2 Where Does Design Fit? 2
- 1-3 Design Philosophy 4
- 1-4 Characteristics of a Designer 6
- 1-5 Developing Design Ability 7

2 THE DESIGN PROCESS 9

- 2-1 Introduction 9
- 2-2 Step 1: Become Acquainted with the Design Situation 10
- 2-3 Step 2: Prepare to Deal with the Situation 11
- 2-4 Step 3: Identify the Elements 14
- 2-5 Step 4: Analyze the Elements 16
- 2-6 Step 5: Create the Designs 17
- 2-7 Step 6: Evaluate the Designs 20
- 2-8 Step 7: Rework the Selected Design 21
- 2-9 Step 8: Develop the Selected Design 23
- 2-10 Step 9: Prepare to Communicate the Design 25
- 2-11 Step 10: Gain Acceptance of the Design 26

3 MATERIALS IN DESIGN 30

- 3-1 Introduction 30
- 3-2 Strength 32
- 3-3 Modulus of Elasticity 32
- 3-4 Ductility 33
- 3-5 Brittleness and Hardness 33

3_6	Resilience and Toughness 34
3-0	Effect of Temperature 34
3_8	Bearing Characteristics 35
3_0	Demping Canacity 35
3-10	Eatigue and Endurance 35
3-10	Wear Resistance 36
3-12	Corrosion Resistance 36
3-12	Machinability 37
3-14	Formability 37
3-15	Castability 37
3-16	Forgeability 38
3-17	Weldability 38
3-18	Grav Cast Iron 38
3-19	White Cast Iron 40
3-20	Chilled Cast Iron 40
3-21	Malleable Cast Iron 41
3-22	Nodular Cast Iron 41
3-23	Corrosion and High-temperature Service 42
3-24	Steel 43
3-25	Low-carbon Steels 44
3-26	Medium-carbon Steels 457
3-27	High-carbon Steels 45 -
3-28	Hot-finished Steel 46
3-29	Cold-finished Steel 46
3-30	Free-cutting Steels 47
3-31	Properties of Plain Carbon Steels 47
3-32	Alloy Steels 48
3-33	High-alloy steels 53
3-34	Tool Steels 55
3-35	Cast Steels 56 🐥
3-36	Aluminum 57
3-37	Wrought Aluminum 59
3-38	Aluminum Castings 60
3-39	Copper Alloys 61
3-40	Brass 61
3-41	Bronze 62
3-42	Magnesium Alloys 63
3-43	Zinc Alloys 64
3-44	Nickel Alloys 64
3-45	Miscellaneous Metals 65
3-46	Plastics 66
3-47	Miscellaneous Materials 68

5-27	Operator Acceptance 134
6 DE	SIGN PROCEDURES 136
6-1	Introduction 136
6-2	Preparation of a Layout 136
6-3	Models 139
6-4	Mock-up 141
6-5	Prototype 143
6-6	Project Log 143
6-7	Evaluation Procedure 144
7 ST	RESS ANALYSIS 147
7-1	Introduction 147
7-2	Types of Loads 148
7-3	Types of Failure 148
7-4	Fatigue and Endurance 149
7-5	Stress Concentrations 150
7-6	Working Load 152
7-7	Design Stress 153
7-8	Combined Loading 155
7-9	Procedure for Stress Analysis 156
8 D	IMENSIONS, TOLERANCES AND FITS 158
8-1	Introduction 158
8-2	Dimensions 158
8-3	Tolerances 159
8-4	Geometric Tolerances 161
8-5	Positional Tolerances 162
8-6	Tolerance Stacks 164
8-7	Fits 167
8-8	Design of Clearance Fits 168
8-9	The Design of Interference Fits 169
8-10	Selective Assembly 172
8-11	Tolerance Produced by Processes 1/2
8-12	Tolerance and Cost 173
8-13	Surface Roughness 173
8-14	Typical Surface Roughness Values 175
8-15	Surface Roughness as Related to 1 olerance and
	Cost 176
- · · · -	

9 FASTENERS 180

- 9-1 Introduction 180
- 9-2 Threaded Fastener Terminology 181