CONTENTS

		Page
PR	REFACE	XV
1.	INTRODUCTION	1
	1.1 Adhesion	1
	1.2 Contaminants	2 2
	1.3 Types of Wear	2
	1.4 Friction and wear experiments	2
	1.5 Metallurgical examination	6
	1.6 Application of wear results	6
2.	SURFACE TOPOGRAPHY	8
	2.1 Asperities	8
	2.2 Measurement of waviness	9
	2.3 Asperity angle	10
	2.4 Measure of roughness	11
	2.5 Fullness or emptiness	11
	2.6 Abbot's bearing curve	12
3.	CONTACT OF SOLIDS	14
	3.1 Single contact	14
	3.2 Multiple contact	16
	3.3 An idealised rough surface	16
	3.4 A realistic rough surface	18
	3.5 Plastic contact	20
	3.6 Effect of work hardening	21
4.	FRICTION	24
	4.1 Area of contact	24
	4.2 Adhesion of junctions	25
	4.3 Mechanism of friction	28
	4.4 Amontons' laws	30
5.	EFFECT OF SLIDING	32
	5.1 Junction growth	32
	5.2 Work of adhesion	33
	5.3 Kinetic friction	35
	5.4 Stick-slip	36
	5.5 Thermal effect	37
	5.6 Oxide film	39
	5.7 Sliding between brittle surfaces	39
	5.8 Effect of contaminants on friction	40
6.	MOLECULAR THEORY OF FRICTION AND WEAR	42
	6.1 Dry friction	42
	6.2 Wear	44
7.	FUNNING-IN WEAR	46
	7.1 Wear curve	46
	7.2 Mechanism	46
	7.3 Law of running-in wear	47
8.	ADHESIVE WEAR	49
	8.1 Rate of wear	49

	8.2 Junction interaction	50
	8.3 Law of adhesive wear	50
	8.4 Asperity angle	52
	8.5 Fatigue mechanism	55
9.	OXIDATIONAL HYPOTHESIS OF WERA	59
	9.1 Oxidational Hypothesis	59
	9.2 Comment on equation	60
10.	SURFACE CONTAMINANTS	62
	10.1 Fractional film defect	62
	10.2Heat of adsorption theory	63
	10.3Importance of E	67
	10.4A simplified law	67
11.	ABRASIVE WEAR	69
	11.1Abrasive wear coefficient	69
	11.2Abrasive wear resistance	70
	11.3Abrasive at the interface	71
	11.4Stored energy	73
12.	WEAR DEBRIS	74
	12.1Energy consideration	74
	12.2Debris size	75
	12.3Effect of load	76
13.	METAL TRANSFER	78
	13.1Steel on brass	78
	13.2Steel on steel	79
	13.3Amount of transfer	80
14.	SURFACE AND SUBSURFACE	82
	14.1 Surface layers and sublayers	82
	14.2Friction	82
	14.3Surface fatigue	82
	14.4Plasticity index	83
15.	TEMPERATURE AND SPEED	85
	15.1Temperature	85
	15.2Speed	86
16.	SOLUBILITY	90
	16.1Solubility	90
15		
17.	CRYSTAL STRUCTURE 17.1Adhesion coefficient	93
	17.2Experiment with cobalt	93 93
	17.3Rare earth materials	94
	17.4Chang of texture	95
10	ROLLING RESISTANCE	96
18.	18.1Principles of rolling motion	96 96
	18.2Slip	90 96
	18.3Rolling in the plastic range	98
	18.4Rolling in the elastic state	101
	18.5Shake-down-limit	102
10	WEAR UNDER ROLLING CONTACT	105
17,	19.1 Slip area	105
	19.2Wear	105

	19.3A low of rolling wear	106
20.	POLYMERS 20.1 Friction and wear 20.2 A general law of friction	110 110 111
	20.3Rubber	113
21.	FRETTING 21.1Four stages of fretting 21.2Measurement of pit depth 21.3Load and temperature 21.4Humidity	116 116 118 119 120
22.	EXAMPLES OF TRIBOLOGICAL COMPONENTS 22.1Gears 22.2Bearings 22.3Piston rings 22.4Wear under impact condition	123 123 127 129 129
23.	WEAR OF BRASS 23.1 Weight loss with sliding distance 23.2 Wear rate 23.3 Transition load	131 131 132 134
24.	FRICTION AND WEAR OF GRAPHITE AND CARBIDE 24.1Graphite 24.2Carbides	137 137 138
25.	WEAR OF CAST IRON 25.1The role of graphite 25.2Hardness 25.3Lubricated sliding wear 25.4Non-lubricated sliding wear 25.5Concluding remarks	140 140 141 142 144 146
26.	WEAR OF ALUMINIUM-SILICON ALLOYS 26.1Effect of silicon on wear 26.2Deformation of a bush 26.3A physical model 26.4Wear rate	148 148 149 150 151
27.	DESIGN FOR WEAR RESISTANCE 27.1 Fatigue wear 27.2 Erosive wear 27.3 Cavitation erosion 27.4 Design for adhesive and abrasive wear resistance 27.5 Importance of wear	154 154 154 154 156 157
INI	INDEX	