Contents

USUAL MEANING OF SYMBOLS USED	
1 INTRODUCTION	1
2 THE MEASUREMENT OF SIZE REDUCTION	3
Methods of Measuring Particle Size	4
Methods of Measuring Surface Area	5
Comparison of Methods	6
Relationship between Surface Area and Particle Size	
Distribution	6
Representation of Size Distribution	10
Appreciation of Particle Size	10
Reduction Ratio	10
3 THE NATURE OF BREAKING	15
Resistance to Breaking	16
The Transformation of Forces	19
Conditions for Breaking	23
Points of Weakness	23
Behaviour of Single Crystals	25
Behaviour of Granular Forms	29
Propagation of Cracks	30
Crack Healing	31
Mechanism of Compression	32
Temperature Effects	33
Effect of Rate of Application of Force	34
Hardness	35
Abrasion	41
Ductility	44
Stickiness	46
4 THE ENERGY CONSUMED IN THE COMMINUTION PROCESS	49
Energy Consumed by Material	50
Grindability	57
Energy Supply Required by Comminuting Equipment	60

5 THE SIZE AND SHAPE OF COMMINUTED PARTICLES	67
Size Distribution	67
Breakage and Selection Functions	75
Degree of Fineness	79 79
Natural Grain Size	81
Geometry of Broken Particles	81
Definition of Shape	83 87
Effect of Continued Comminution	91
Kinetics of Grinding	92
Size Control During Milling Closed-circuit Milling	93
Closed-circuit Calculations	93 94
Closed-circuit Calculations	74
6 THE BEHAVIOUR OF MIXTURES DURING COMMINUTION	101
Mixtures of Two Solid Components	101
Wet and Dry Comminution	103
Additives to Aid Grinding	108
Concomitant Effects of Comminution	111
7 THE CLASSIFICATION, SELECTION AND LAYOUT OF	
COMMINUTION EQUIPMENT	115
Earliest Classification	115
Classification According to Purpose	115
Classification According to Comminution Process	117
Mechanics of Comminuting Equipment	117
Preliminary Considerations for Selection of Equipmen	t 119
Plant Layout and Design	123
8 NIPPING MACHINES	129
Nipping	129
Jaw, Gyratory and Roll Crushers	132
Jaw Crushers	133
Gyratory Crushers	146
Roll Crushers	157
Comparison of Jaw, Gyratory and Roll Crushers	168
Disc Crushers	170
Pan Mills	173
Ring Roll and Ring Ball Mills	181
Raymond Mill	183
Lopulco or Loesche Mill	185
Babcock and Wilcox Ring Ball Mill	186
Capacity of Ring Roll and Ring Ball Mills	188
Power Consumption of Ring Roll and Ring Ball Mi	lls 189
9 IMPACTING MACHINES	191
Mechanism of Impact	192
Rotary Hammer Machines	193
Mechanism in Rotary Impact Mill	196
, <u>F</u>	

¥.,

Rotor Speed	197
Number of Impactors or Hammers and Their Shape	198
Nature and Design of Rotor	199
Impact Plates	200
Size of Product	201
Shape of Product Particle	201
Method of Feeding	202
Air Flow in Machines	202
Maintenance	203
Capacity	204
Power Consumption	204
Additional Processing with Rotary Impactor	204
Pin Mills	205
Power Consumption	208
Capacity	208
Stamp Mills	209
Pestles	210
Drop	210
Water Usage	210
Size of Feed	210
Size of Product	211
Capacity	211
Power	211
Vibration Mills	211
Advantages of Vibration Mill	212
Disadvantages of Vibration Mill	213
Torus Mill	213
Cylindrical Mill	216
10 TUMBLING MACHINES	225
	225
Rod-loaded Mills	226
Ball-loaded Mills	234
Autogenous Mills	249
11 CUTTING MACHINES	255
Mechanism of Cutting	255
Materials of Construction	256
Types of Cutting Tool	257
12 ATTRITING MACHINES	261
Buhrstone	261
Colloid Mill	262
Petit Pulveriser	262
Fluid-energy Mill	263
Sand Grinder	266
Ultra-rotor	267

13 OTHER METHODS OF	COMMINUTION	271
Weathering		271
Thermal Size Rec	luction	271
Pressure Alteration	on	272
Ultrasonics		272
Electrical		273
Chemical		274
Explosion		275
INDEX		281

INDEX

Ś

(vi)