CONTENTS

PREFACE				xi
A NOTE ON UNITS				xiv
GREEK ALPI	HABI	ET		xv
GLOSSARY (OF S	YMBOLS		xvi
CHAPTER 1	INT	RODUCTION TO GEOTECHNICAL	ENGINEERING	
	1.1	What is geotechnical engineering?		
	1.2	Principles of engineering		3
	1.3	Fundamentals of mechanics		3
	1.4	Material behaviour		4
	1.5	Basic characteristics of soils		6
	1.6	Basic forms of geotechnical structure		7
	1.7	Factors of safety and load factors		8
	1.8	Summary	∵,ð	9
CHAPTER 2	BAS	SIC MECHANICS		10
-	2.1	Introduction		10
	2.2	Stresses and strains		10
	2.3	Plane strain and axial symmetry		12
	2.4	Rigid body mechanics		12
	2.5	Analysis of stress		14
	2.6	Analysis of strain		15
	2.7	Stress ratio and dilation		16
	2.8	Slip surfaces		18
•	2.9	Summary		19
CHAPTER 3	ESS	SENTIALS OF MATERIAL BEHAVIO	UR	22
	3.1	Stress-strain behaviour, stiffness and sti	rength	22
	3.2	Choice of parameters for stress and stra	in	23
	3.3	Constitutive equations		25

	3.4 Strength	26
	3.5 Elasticity	28
	3.6 Perfect plasticity	29
	3.7 Combined elasto-plastic behaviour	31
	3.8 Time and rate effects	34
	3.9 Summary	35
CHAPTER 4	THE STRUCTURE OF THE EARTH	37
	4.1 Introduction	37
	4.2 The Earth's crust	37
	4.3 Geological processes	39
	4.4 Stratigraphy and the age of soils and rocks	39
	4.5 Depositional environments	41
	4.6 Recent geological events	43
	4.7 Importance of geology in geotechnical engineer	ing 43
CHAPTER 5	CLASSIFICATION OF SOILS	45
	5.1 Description and classification	45
	5.2 Description of soils	45
	5.3 Soil particle sizes, shapes and gradings	46
	5.4 Properties of fine-grained soils	47
	5.5 Specific volume, water content and unit weight	50
	5.6 Limits of consistency	52
	5.7 Current state	53
	5.8 Origins of soils	54
	5.9 Simple practical exercises	54
	5.10 Summary	55
CHAPTER 6	PORE PRESSURE, EFFECTIVE STRESS AND	DRAINAGE 59
	6.1 Introduction	59
	6.2 Stress in the ground	59
	6.3 Groundwater and pore pressure	60
	6.4 Effective stress	61
	6.5 Importance of effective stress	62
	6.6 Demonstrations of effective stress	63
	6.7 Volume change and drainage	64
	6.8 Drained loading, undrained loading and consol	lidation 65
	6.9 Rates of loading and drainage	68
	6.10 Summary	69
CHAPTER 7	LABORATORY TESTING OF SOILS	299 年
	7.1 Purposes of laboratory tests	74
	7.2 Standard tests and specifications	75
	7.3 Basic classification tests	75
	7.4 Measurement of coefficient of permeability	77
	7.5 Principal features of soil loading tests	79
	7.6 One-dimensional compression and consolidation	on (oedometer) tests 80
	7.7 Shear tests	81
	7.8 Conventional triaxial compression tests	82
	7.9 Hvdraulic triaxial cells—stress path tests	83

	7.10	Comments on soil testing	85
	7.11	Summary	86
CHAPTER 8	CO	MPRESSION AND SWELLING	91
	8.1	Introduction	91
	8.2	Isotropic compression and swelling	92
	8.3	Overconsolidation	93
	8.4	States of soils on the wet side and on the dry side of critical	95
	8.5	One-dimensional compression and swelling	96
	8.6	Laboratory demonstrations of compression and swelling of soils	99
	8.7	Summary	100
CHAPTER 9	CRI	TICAL STATE STRENGTH OF SOIL	103
	9.1	Behaviour of soil in shear tests	103
	9.2	Peak, ultimate and residual states	105
	9.3	Critical states	106
	9.4	Undrained strength	107
	9.5	Normalizing	109
	9.6	Critical state strength of soils measured in triaxial tests	110
	9.7	Relationships between strength measured in shear and triaxial tests	113
	9.8	Simple experimental investigations of critical states	114
	9.9	True cohesion in soils	116
	9.10	Estimation of the critical state strength parameters from classification	
	.	tests	116
	9.11	Summarv	119
CHAPTER 10	PEA	K STATES	124
	10.1	Introduction	124
	10.2	Mohr-Coulomb line in shear tests	125
	10.3	Mohr-Coulomb line in triaxial tests	127
	10.4	Curved peak state lines	128
	10.5	Peak states and dilation	129
	10.6	Variation of peak state with initial state	132
	10.7	Summary	134
CHAPTER 11	BEH	IAVIOUR OF SOIL BEFORE FAILURE	138
	11.1	Introduction	138
	11.2	Wet side and dry side of critical	138
	11.3	State boundary surface for soil	140
	11.4	Elastic behaviour at states inside the state boundary surface	143
	11.5	Undrained loading on the state boundary surface	144
	11.6	Stress ratio and dilation	146
	11.7	Softening of soil beyond the peak state and development of slip surfaces	147
•	11.8	Summary	147
CHAPTER 12	CAN	M CLAY	151
·	12.1	Introduction	151
	12.2	Basic features of the Cam clay models	151

	12.3	State boundary surface for ordinary Cam clay	152
	12.4	Calculation of plastic strains	153
	12.5	Yielding and hardening	154
	12.6	Complete constitutive equations for ordinary Cam clay	155
	12.7	Applications of Cam clay in design	156
	12.8	Summary	156
		•	
CHAPTER 13	STIF	FNESS OF SOIL	158
	13.1	Introduction	158
	13.2	Cam clay and soil stiffness	150
	133	Stiffness-strain relationships for soil	150
	13.4	Strains in the ground	162
	13.5	Measurement of soil stiffness in laboratory tests	162
	13.5	Stiffness of soil at small and very small strains	164
	13.0	Numerical modelling of soil stiffness	104
	12.0	Summery	100
	13.0	Summary	100
	CON		
CHAPIER 14		SOLIDATION	168
	14.1	Basic mechanism of consolidation	168
	14.2	Theory for one-dimensional consolidation	168
	14.3	Isochrones	170
	14.4	Properties of isochrones	171
	14.5	Solution for one-dimensional consolidation by parabolic	
		isochrones	173
	14.6	Other consolidation solutions	176
	14.7	Determination of c_v from oedometer tests	176
	14.8	Continuous loading and consolidation	178
	14.9	Summary	179
CILADTED 15			100
CHAPIER 15	AGE	ING AND STRUCTURE IN NATURAL SOILS	183
	15.1	Characteristics of natural soils	183
	15.2	Formation of flatural soils: one-dimensional compression and	
		swelling	184
	15.3	Ageing	186
	15.4	Vibration and compaction	186
-	15.5	Creep	187
	15.6	Cementing	187
	15.7	Weathering	188
	15.8	Changes in pore water salinity	189
	15.9	Summary	189
CUADTED 16	CDO	LINID INVESTICATIONS	100
CHALLER 10	URU 16 1	UND INVESTIGATIONS	190
1	167	Objectives of ground investigations	190
1	16.2	Discurves of ground investigations	190
	10.3	Franking and compliant and compliant	192
	10.4	Test prong, orning and sampling	193
-	16.5	in sur testing	194
, ,	10.0	States of soils in the ground	197
l	10./	investigating groundwater and permeability	198

		16.8	Ground investigation reports	200
		16.9	Summarv	200
CHAPTER	17	STEA	ADY STATE SEEPAGE	203
		17.1	Groundwater conditions	203
		17.2	Practical problems of groundwater flow	204
		17.3	Essentials of steady state seepage	205
		17.4	Flow through a simple flownet	207
		17.5	Flownet for two-dimensional seepage	209
		17.6	Piping and erosion	210
		17.7	Seepage through anisotropic soils	212
		17.8	Summary	212
CHAPTER	18	STAE	BILITY OF SOIL STRUCTURES USING BOUND METHODS	215
		18.1	Introduction	215
		18.2	Theorems of plastic collapse	216
		18.3	Compatible mechanisms of slip surfaces	217
		18.4	Work done by internal stresses and external loads	218
		18.5	Simple upper bounds for a foundation	220
		18.6	Discontinuous equilibrium stress states	222
		18.7	Simple lower bounds for a foundation	226
		18.8	Upper and lower bound solutions using fans	227
		18.9	Bound solutions for the bearing capacity of a foundation using	
			fans	231
		18.10	Summary	233
CHAPTER	19	LIMI	T EOUILIBRIUM METHOD	240
		19.1	Theory of the limit equilibrium method	240
		19.2	Simple limit equilibrium solutions	241
		19.3	Coulomb wedge analyses	242
		19.4	Simple slip circle analysis for undrained loading	245
		19.5	Slip circle method for drained loading—the method of slices	246
		19.6	Other limit equilibrium methods	240
		19.7	Limit equilibrium solutions	251
		19.8	Summary	251
СНАРТЕР	20	STAR	NI ITV OF SLOPES	256
I L'IX	.	201	Introduction	250
		20.1	Types of instability	250
		20.2	Stress changes in slopes	257
		20.5	Influence of water on stability of slopes	250
		20.4	Choice of strength parameters and factor of safety	200
		20.5	Stability of infinite clones	201
		20.0	Stability of vertical cuts	203
		20.7	Routine slone stability analyses	200
٠		20.0 20.0	Rehaviour of simple excavations	270
		20.9	Summary	2/1
		20.10	Summary	212
CHAPTER	21]	EART	TH PRESSURES AND STABILITY OF RETAINING WALLS	275
		21.1	Introduction	275

	21.2		*
	21.2	Types of retaining structure	276
	21.3	Failure of retaining walls	277
	21.4	Stress changes in soil hear retaining walls	278
	21.5	Coloration of earth measured during the li	279
	21.0	Calculation of earth pressures underined loading	281
	21.7	Overall stability	282
	21.0	Choices of soil strength and factor of sofety	283
	21.9	Summary	280
	21.10	Summary	287
CHAPTER 22	BEA	RING CAPACITY AND SETTLEMENT OF SHALLOW	
	FOU	NDATIONS	292
	22.1	Types of foundations	292
	22.2	Foundation behaviour	293
	22.3	Stress changes in foundations	295
	22.4	Bearing capacity of shallow foundations	296
	22.5	Choice of soil strength and load factor for foundations	297
	22.6	Foundations on sand	299
	22.7	Foundations on elastic soil	299
	22.8	Settlements for one-dimensional loading	302
	22.9	Summary	304
CHAPTER 23	PILF	D FOUNDATIONS	300
	23.1	Types of piled foundations	309
	23.2	Base resistance of single piles	310
	23.3	Shaft friction on piles	311
	23.4	Pile testing and driving formulae	312
	23.5	Capacity of pile groups	313
	23.6	Summary	313
CHAPTER 24	CFÓ	TECHNICAL CENTRIELICE MODELLING	216
CHAI IER 24	24.1	Modelling in engineering	310
	24.1 24.2	Scaling laws and dimensional analysis	216
	24.2	Scaling geotechnical models	217
	24.5	Purposes of modelling	210
	24.4	Geotechnical centrifuges	220
	24.5	Control and instrumentation in centrifuge models	320
	24.7	Summary	322
	2	Summury	322
CHAPTER 25	CON	CLUDING REMARKS	324
AUTHOR INE	DEX		326
SUBJECT INI	DEX		328