CONTENTS

FOREWORD

AIMS AND WORKING SUGGESTIONS	vii
Chan	
1 DEFINITION OF STATICALLY INDETERMINATE STRUCTURES	
STATICALLY DETERMINATE STRUCTURES	
STATICALLY INDETERMINATE STRUCTURES	3
POINTS OF DIFFERENCE BETWEEN THE TWO TYPES	3
2 METHOD OF AREA MOMENTS	
Principle of Area Moments	4
Procedure	5
Convention of Signs (1)	5
SIMPLE BEAMS	6
THEOREM OF THREE MOMENTS	17
BEAM WITH APPLIED MOMENT	33
3 METHOD OF STRAIN ENERGY	
General Principles	35
BEAMS AND FRAMES HAVING ONE REDUNDANT	
Reaction	36
Beams and Frames having More than One	
Redundancy	46
FRAMES WITH SLOPING OR CURVED MEMBERS	50
Multi-span, Multi-storey, Vierendeel and	
CIRCULAR FRAMES	55
4. TWO-HINGED AND FIXED ARCHES	
Significance of the Arch Profile	69
Two-hinged Arches	69
Segmental Arches	72
Varying Moment of Inertia	76
Parabolic Arches	78
Thrust and Shear	83
Temperature Thrust	86
Rib-shortening	86
Fixed Arches	90
The Elastic Centre	94
ix	

Chap.

5	METHOD OF SLOPE DEFLECTION	
	Slope Deflection Equations	99
	Convention of Signs (2)	99
	SIMPLE BEAMS WITH SETTLEMENT OF SUPPORTS	102
	Portal and Building Frames	107
	Frames with Settlement of Foundations	124
6	METHOD OF MOMENT DISTRIBUTION	
	Basic Assumptions	130
	Convention of Signs (2)	131
	Continuous Beams	
	Fundamental Stages in the Method	132
	Simplified Procedure for Free Ends	134
	Portal and Building Frames without Sidesway	138
	Portal and Building Frames with Sidesway	142
	Correcting Moments	142
	Portal and Building Frames with Lateral	
	LOADING	161
	FRAMES WITH SLOPING MEMBERS	170
7	THE COLUMN ANALOGY	
	Equations for a Bent Beam	
	Equations for a Short Column eccentrically	
	loaded	175
	Convention of Signs (3)	176
	BEAMS	177
	Portal Frames	184
	UNSYMMETRICAL FRAMES	192
	Stress at any Point in a Column Cross-section	192
8	INFLUENCE LINES FOR CONTINUOUS STRUC-	
	Application of Maxwell's Theorem of Reci-	
	procal Displacements	
	INFLUENCE LINES FOR STATICALLY INDETERMINATE BEAMS	
	INFLUENCE LINES FOR TWO-HINGED AND FIXED PORTALS	
	Influence Lines for Two-hinged and Fixed Arches	

Cha	ap.	Page	
9	PIN-JOINTED STRUCTURES WITH REDUNDANT	Iaku	
	Procedure	227	
	Endors warme One on True Denor	231	
	TRAMES WITH ONE OR TWO KEDUNDANCIES	238	
	LACK OF FIT	250	
	REDUNDANT REACTIONS AND THE EFFECT OF VARIA-		
	TION IN CROSS-SECTIONAL AREA	252	
	The Trussed Beam	257	
10	MODEL ANALYSIS		
	Models of Pinned and Fixed-end Beams	262	
	MODELS OF PORTAL FRAMES	264	
	Intercepts	265	
	Varying Second Moment of Area	265	
	Internal Forces and Moments	205	
		200	
Pict	Pictorial Index		
App	endix	269	