Contents

Pre Syr	Preface Symbols Introduction	
Int		
	Discrete Linear Systems	
1.1	Systems with a single degree of freedom	1
1.2	Systems with many degrees of freedom	4
1.3	State space	6
1.4	Free behaviour	8
1.5	Uncoupling of the equations of motion	14
1.6	Excitation due to the motion of the constraints	21
1.7	Forced oscillations with harmonic excitation	22
1.8	System with structural damping	34
1 0		00

1.9	Systems with frequency dependent parameters	38
1.10	Co-ordinate transformation based on Ritz vectors	40
1.11	Structural modifications	41
1.12	Parameter identification	43
1.13	Laplace transforms, block diagrams and transfer functions	45
1.14	Response to non-harmonic excitation	48
1.15	Short account on random vibrations	53
1.16	Concluding examples	58
1.17	Exercises	66

2. Continuous Linear Systems

2.1	General considerations	69
2.2	Beams and bars	73
2.3	Flexural vibration of rectangular plates	91
2.4	Propagation of elastic waves in taut strings and pipes	94
2.5	The assumed modes methods	98
2.6	Lumped parameters methods	101
2.7	The finite element method	108
2.8	Reduction of the number of the degrees of freedom	124
2.9	Exercises	132

3. Nonlinear Systems

3.1	Linear versus nonlinear systems	135
3.2	Equation of motion	136
3.3	Free oscillations of the undamped system.	140
3.4	Forced oscillations of the undamped system.	154
3.5	Free oscillations of the damped systems	162
3.6	Forced oscillations of the damped system	172

3.9 Exercises	203

4. Dynamic Behaviour of Rotating Machinery

4.1 Rotors and structures	205
4.2 Vibration of rotors: the Campbell diagram	207
4.3 Forced vibrations of rotors: critical speeds	209
4.4 Fields of instability	211
4.5 The linear "Jeffcott rotor"	214
4.6 Model with 4 degrees of freedom: gyroscopic effect	233
4.7 Dynamic study of rotors with many degrees of freedom	247
4.8 Non isotropic systems	261
4.9 Introduction to nonlinear rotordynamics	281
4.10 Rotors on Hydrodynamic bearings (oil whirl and oil whip)	295
4.11 Flexural vibration dampers	311
4.12 Signature of rotating machinery	313
4.13 Rotor balancing	317
4.14 Exercises	326

5. Dynamic Problems of Reciprocating Machines

5.1	Specific problems of reciprocating machines	329
5.2	"Equivalent system" for the study of torsional vibrations	330
5.3	Computation of the natural frequencies	340
5.4	Forced vibrations	342
5.5	Torsional instability of crank mechanisms	362
5.6	Dampers for torsional vibrations	365
5.7	Experimental measurements of torsional vibrations	373
5.8	Axial vibrations of crankshafts	374
5.9	Short outline on balancing of reciprocating machines	375
5.10	Exercises	378

6. Short Outline on Controlled and Active Systems

6.1	General considerations	381
6.2	Control systems	383
6.3	Controlled discrete linear systems	387
6.4	Modal approach to structural control	403
6.5	Dynamic study of rotors on magnetic bearings	413
6.6	Exercises	423

Appendix. Solution Methods

A.1	General considerations	425
A.2	Solution of linear sets of equations	426
A.3	Computation of the eigenfrequencies	429
A.4	Solution of nonlinear sets of equations	438
A.5	Numerical integration in time of the equation of motion	440

Bibliography	
--------------	--

Index

x

443	
449	