

PREFACE TO THE FOURTH EDITION.	PAGE
PREFACE TO THE FIRST EDITION.	vi
CHAPTER I	
ART. OUTER AND INNER FORCES	
1. Definitions	
2. Live and Dead Loads	
3. Outer Forces	
4. Weight of Structure	5
5. Weight of Railroad Bridges	5
6. Approximate Truss Weights	7
7. Weight of Highway Bridges	10
8. Weight of Roof Trusses	14
9. Weight of Steel-frame Buildings	15
10. Live Loads for Railroad Bridges	16
11. Live Loads for Highway Bridges.	18
12. Live Loads for Buildings	18
13. Wind Pressure.	20
14. Snow Load	27
15. Centrigual Force and Friction	28
16. Impact on Railroad Bridges.	28
17. Impact on Highway Bridges and Buildings	30
18. Inner Forces	31
19. Factor of Safety.	33
CHAPTER II	

LAWS OF STATICS, REACTIONS, SHEARS AND MOMENTS, INFLUENCE LIN	(ES
20. Laws of Statics	36
21. Reactions.	37
22. Computation of Reactions. Method of Procedure.	38
23. Reaction Conventions	40
24. Point of Application of Loads and Reactions	
25. Solution of Reaction Problems.	
26. Shear and Bending Moment Defined.	46
27. Method of Computation, Shear, and Bending Moment	46
28. Signs for Shear and Bending Moment	46
29. Shear and Moment, Common Cases	47
30. Curves of Shear and Moment Defined and Illustrated.	47
31. Shear and Moment. Distributed Load.	48
32. Shear and Moment. Uniformly Varying Load	50
33. Location of Section of Maximum Moment.	
34. Theorem for Computing Moments	
• iv	

iv

ART.		PAG
35.	Beams Fixed at Ends.	5
36.	Effect of Floor Beams	52
37.	Typical Curves of Shear and Moment	5
38.	Influence Lines and Tables Defined.	6
39.	Examples of Influence Lines.	6
40.	Properties of the Influence Line	6
41.	Neutral Point	6'
42.	Position of Loads for Maximum Shear and Moment at a Definite Section.	;
43.	Maximum Moments and Shears. Structures Supported at Ends	
44.	Approximate Method for Maximum Shear	7

CHAPTER III

CONCENTRATED LOAD SYSTEMS

4 5.	Shear at a Fixed Section. Girder without Floor Beams.	76
46.	Moment at a Fixed Section	80
47.	Shear, Girder with Floor Beams	82
48.	Formula for Position of Loads for Maximum Shear for Inter-	
. •	mediate Panels	87
49.	Maximum Moment	88
50.	Moment and Shear at the Critical Section.	89
51.	Moments and Shears.	93
52 .	Moment Diagram	98

CHAPTER IV

BEAM DESIGN

53.	Formulas	101
54.	Method of Design	103
55.	Wooden Beams	103
56.	Steel Beams.	104
57.	Examples of Beam Design	104
58.	Composite Beams	107
59 .	Stiffness	107

CHAPTER V

PLATE-GIRDER DESIGN

60. Plate Girders Defined	109
61. Plate-girder-web. Theory	110
62. Plate-girder-flange. Theory	111
63. Degree of Approximation of Flange Formula	114
64. Degree of Approximation of Shear Formula	119
65. Allowance for Rivet Holes	1 21
66. Example of Girder Design	123
67. Flange Rivets and Riveted Joints	124
68. Flange Rivets. Approximate Method of Computing Pitch	127
69. Flange Rivets. Precise Method of Computation of Pitch.	129
70. Flange Rivets. Example in Computation of Pitch	130
71. Direct Web Stresses	132

X .

xí
PAGE
135
137
140
142
146
148

CHAPTER VI

SIMPLE TRUSSES

78.	Trusses Defined	150
		150
	Theory	151
81.	Methods	151
82.	Analytical Method of Joints Described	151
	Character of Stress	
84.	Determinate and Indeterminate Trusses	153
85.	Mode of Procedure. Analytical Methods of Joints	154
86.	Application of Analytical Method of Joints	155
	Graphical Method of Joints Described	
88.	Mode of Procedure. Graphical Method of Joints	157
	Application of Graphical Method of Joints	
	Ambiguous Cases	
		161
92.	Mode of Procedure. Method of Moments	161
	Application of Method of Moments	162
94.	Method of Shear Described	163
95.	Mode of Procedure. Method of Shear	164
	Application of Method of Shear	165
	General Rules for Determination of Truss Stresses	165
98.	Counters	166
	Types of Truss	168
100.	Systems of Loading.	171
101.	Index Stresses.	172
102.	Computation of Stresses. Pratt Truss	174
103.	Computation of Stresses. Warren Truss	177
104.	Computation of Stresses. Subdivided Warren Truss.	181
105.	Computation of Stresses. Bridge Trusses with Nonparallel	
1	Chords	183
106.	Computation of Stresses. Bridge Trusses with Nonparallel	
	Chords	187
107.	Computation of Stresses. Bridge Trusses with Parabolic Chord	196

CHAPTER VII

-	5		
	CHAPTER VII	х. Х.	1.1
BRIDGE TRUSSES	WITH SECONDARY WEB SYSTEMS,	INCLUDING THE	BALTI-
	MORE AND PETIT TRUSSES		
100 0 1 0			200

108.	Secondary Systems Described				203
109.	Computation of Maximum Stresses in Petit Truss	•	•••		208

xi

PAG	Е
CHAPTER VIII	
TRUSSES WITH MULTIPLE WEB SYSTEMS, LATERAL AND PORTAL BRACING, TRANSVERSE BENTS, VIADUCT TOWERS	
110. Trusses with Multiple Web Systems	7
111. Approximate Determination of Maximum Stresses in a Double-	
system Warren Truss	8
112. Approximate Determination of Maximum Stresses in a Whipple	
Truss	5
113. Skew Bridges	
114. Lateral and Portal Bracing	
115. Lateral-bracing Trusses	2
116. Approximate Determination of Maximum Stresses in Lateral	
Bracing	
117. Portals. Approximate Solution	
118. Portals. Miscellaneous	
119. Transverse Bents in Mill Buildings. Approximate Method 24	
120. Viaduct Towers	1

CHAPTER IX

CANTILEVER BRIDGES

121. Types of Structures for Long-span Bridges	258
122. Cantilever Bridges Described	258
123. Equations of Conditions	·259
124. Anchorage	´26 1
125. Reactions. Cantilever Trusses	261
126. Shears and Moments. Cantilever Trusses	2 66
127. Bar Stresses. Cantilever Trusses	266
CHAPTER X	

CHAPTER X

THREE-HINGED ARCHES

128. Characteristics of the Arch	. 270
129. Types of Arch.	. 270
130. Reactions. Three-hinged Metal Arches	. 272
131. Maximum Stresses in Elastic Arch Ribs	. 274
132. Parabolic Three-hinged Arches	. 770

CHAPTER XI

DESIGN OF COLUMNS AND TENSION MEMBERS

133.	Columns. General Considerations	•	287
134.	Condition of Ends		288
135.	Column Formulas		289
136.	Value of Ratio of Length to Radius of Gyration		292
137.	Formulas for Long Columns		292
138.	Cast-iron Columns.		293
139.	Timber and Concrete Columns.		295
140.	Typical Column Sections	·	295
141.	General Dimensions and Limiting Conditions		297

ART.				PAGE
142.	Method of Design			. 298
	Determination of Cross Section of Typical Steel Columns.			
144.	Lattice Bars and Batten Plates			. 302
145.	Stress in Lattice Bars.			. 304
146.	Width of Lattice Bars and Tie Plates.	• *		. 30 6
147.	Rivet Pitch			. 307
1 48 .	Distribution of Normal Stresses on Cross Sections of Str	rai	gh	t ·
	Bars			. 307
1 49 .	Effect of Combined Flexure and Thrust or Pull on a Colum	nn	1 0	r
	Tension Member.			. 309
150.	Building Columns under Eccentric Loads			. 30 9
151.	Design of Cast-iron Columns			. 310
152.	Design of Iron and Steel Tension Members			. 313

CHAPTER XII Pin and Riveted-truss Joints

	153.	Bridge Pins Described	317
*	154.	Arrangement of Members on Pin.	317
	155.	Minimum Size of Pinse	320
	156.	Stresses Causing Maximum Moment and Shear	32 1
	157.	Computation of Maximum Moment and Shear	322
	158.	Computation of a Top-chord Pin for Truss Shown in Fig. 245.	323
		Computation of a Bottom-chord Pin for Truss Shown in Fig. 245	
	159.		32 6
	159. 160.	Computation of a Bottom-chord Pin for Truss Shown in Fig. 245	326 329
	159. 160. 161.	Computation of a Bottom-chord Pin for Truss Shown in Fig. 245 Effect upon Pin of Change of Arrangement of Members. Pin-plate Rivets.	326 329 330
	159. 160. 161. 162.	Computation of a Bottom-chord Pin for Truss Shown in Fig. 245 Effect upon Pin of Change of Arrangement of Members.	326 329 330 330

	CHAPTER XIII	
	GRAPHICAL STATICS	
165.	Graphical and Analytical Methods Compared	39
166.	Force and Funicular Polygons	36
167.	Characteristics of the Funicular Polygon	39
168.	Reactions	40
169.	Graphical Method of Moments	42
170.	Graphical Method of Moments with a Concentrated Load System 3	44
171.	Graphical Method of Shear	45
1 72 .	Funicular Polygon through Several Points	48

CHAPTER XIV Deflection Slope and Camber

173.	Elastic and Nonela	stic Deflection of Trusses	354
174.	Truss Deflection.	Trigonometrical Method.	354
175.	Truss Deflection.	Method of Rotation.	355
176.	Truss Deflection.	Method of Work	357
177.	Truss Deflection Il	lustrated.	360
178.	Deflection of Beam	s and Girders.	363

xiv

Авт. 179.	Slope by Method of Work					Page 366
1 80 .	Graphical Method of Truss Deflection					369
181.	Correction of the Williot Diagram					374
	Elastic-load Method of Truss Deflections.					
	Trusses					
183.	Deflection of a Cantilever Arm.					384
	Effect of Submembers					
185.	Maxwell's Theorem of Reciprocal Deflections					390
186.	Slope and Deflection. Moment-area Method					393
187.	Camber Defined.					397
188.	Rules for Computing Cambers.	•			•	398

CHAPTER XV

STATICALLY INDETERMINATE GIRDERS AND TRUSSES

190. Reactions on Continuous Girders. Method of Computation
192. Application of the Three-moment Equation
192. Application of the Three-moment Equation
193. Reactions, Shears, and Moments for Common Cases of Con-
tinuous Girders
194. Reactions upon Continuous Girders by Method of Deflections . 410
195. Application of the Method of Deflections to Determination of
Girder Reactions
196. Statically Indeterminate Trusses
197. Continuous Trusses
198. Trusses with Redundant Bars
199. Theorem of Least Work
200. Expressions for Internal Work
201. Examples of Application of Theorem of Least Work
202. Reactions in Continuous Girders. Method of Least Work 420
203. Reactions in Continuous Trusses. Method of Least Work 42
204. Stresses of Trusses with Redundant Members by Method of Least
Work
205. Influence Lines and Tables for Indeterminate Structures 439
206. Stresses in Indeterminate Structures Due to Changes in Tem-
perature
207. Stresses in Framed Bents by Method of Least Work 44
208. Slope-deflection Theorem
209. Moment Distribution
210. Application of Moment-distribution Method to Vertical Loads. 45
211. Application of Moment-distribution Method to a Building 46
212. Application of Moment-distribution Method to Transverse Forces 46

CHAPTER XVI

SPACE FRAMEWORK

213 .	Definition	. 469
2 14.	Statical Conditions.	. 469
215.	Fixing the Direction of Reactions	. 472

		PAGE
216.	Type of Space Framework	. 473
217.	Method of Computation	. 474
218.	Illustration of Methods of Computation	. 475
	Stresses in Symmetrical Polygonal Ring without Radial Bars	
	Stresses in a Polygonal Ring without Radial Bars	
221.	Schwedler Dome.	492
	CHAPTER XVII	
	MOVABLE BRIDGES	
000	Manable Dridness Comme	505

222.	Movable Bridges. General	505
	Stresses in Bascule Bridges	
224.	Types of Girders and Trusses for Swing Bridges and Equations for	
	Reactions	507
225.	Points of Support for Swing Bridges	
226.	Determination of Reactions on a Partially Continuous Girder	508
227.	Influence of End Supports upon Swing-bridge Reactions	509
228.	Tables of Reactions for Continuous and Partially Continuous	
	Girders Used for Swing Bridges	510
229.	Maximum Stresses in Swing Bridge.	510
230.	Specification for Impact and Reversal of Stress	515
231.	Computation of Maximum Stresses in Swing Bridges by Approxi-	
	mate Method	515

CHAPTER XVIII

MASONRY DAMS

232.	Definitions			523
233.	Assumptions for Gravity Dams			523
234.	Distribution of Stress over Joints of Masonry Dams .		• •	523
235.	Application of Equations to Dams		. ,	524
236.	Outer Forces			526
237.	Economical Cross Section.			527
238.	Determination of Profile of a Low Dam			530
239.	Determination of Preliminary Profile of a High Dam.			5 3 1
240.	Graphical Method of Solution.	•		532
241.	Graphical and Analytical Methods Combined			53 5
242.	Arched Dams			537

CHAPTER XIX

EARTH PRESSURE

243.	Cohesion, Friction, and Weight	540
244.	Active and Passive Pressure.	541
245.	Method of Trial	543
246.	Rankine's Method	544
247.	Surcharged Wall.	549

CHAPTER XX

MASONRY ARCHES WITH FIXED ENDS

248.	Determination of Span and Rise.	552
249.	Preliminary Determination of Thickness of Arch Rib	552

хv

i

ART.								PAGE
250.	Shape of Arch Axis	•	•					553
251.	Outer Forces	•					•	556
252.	Theory			;		÷	•	557
25 3 .	Formulas for Arches of Constant Cross Section .							563
254.	Comparison of Arch and Fixed-ended Beam		•	•			•	563
255.	Temperature Stresses		•	•		•		564
256.	Effect of Horizontal Movement of Abutments					•		566
257.	Precision of Formulas.		•			•	•	567
258.	Line of Resistance							568
259.	Distribution of Stress over Cross Section							568
260.	Computation of External Forces by Approximate	M	etł	od				569
26 1.	Influence Lines							572
262.	Critical Section				•			573

CHAPTER XXI

WIND STRESSES IN FRAMED BENTS OF HIGH BUILDINGS

263.	Definition												•	576
264.	Approximate Methods of Solution						•			•		•	•	576
265.	Theorems									٠.		•	•	578
266.	Application of Theorems									÷				580
267.	Illustrative Examples													582
268.	Stresses Due to Combination of Li	ive	, D	ead	, a	nd	W	'in c	łF	or	ce	3.		592
269.	Wind Pressure Specified in Buildin	ıg İ	Lav	vs.										596
270.	Exact Method of Solution							•			•			597

INDEX.

xvi