Contents

INTRODUCTION			1	
1	STI	EEL: MATERIAL PROPERTIES AND DESIGN	7	
	1.1	The Design Process: Concepts and Objectives	8	
	1.2	Specifications and Codes	14	
	1.3	Structural Steel Members	22	
	1.4	Behavioral Characteristics of Steel	27	
	1.5	Material Behavior in Structures	32	
		(a) Biaxial Stress Considerations	32	
		(b) Thermal Considerations	37	
		(c) Strain and Deformation Compatibility	38	
		(d) Fatigue	39	
		(e) Energy Absorption	39	
	1.6	Design and Behavior of Tension Members	40	
		(a) Constructibility—Stiffness Considerations	41	
		(b) Strength Limit State—Yielding	41	
		(c) Serviceability Considerations	42	
		(d) LRFD Specifications	44	
		(e) Analyzing the Objectives of LRFD Specification for		
		Tension Members	44	
		(f) Fracture as a Result of Combined Tension and Shear	48	
		(g) Effect of Shear Lag on Connector Fracture	51	
	1.7	Bolted Connections	52 53	
		(a) Bolts in Tension	53	
		(b) Bolts in Shear	55 56	
		(c) Bolts in Bearing (d) Slin Critical Polted Connections	58	
		(d) Slip-Critical Bolted Connections(e) Bolts Subjected to Tension and Shear	59	
		(f) Effect of Connector Eccentricity on Member Strength	67	
	1.8	Welded Connections	68	
	1.0	(a) Connector Strength	74	
		(b) Development of Member by Welding	77	
		(c) Analysis of Eccentrically Loaded Weld Groups	78	
		(d) Design of Eccentrically Loaded Weld Groups	83	
2		E FLEXURAL BEHAVIOR OF STABLE		
	BE.	AM SYSTEMS	93	
	2.1	Characterizing the Flexural Behavior of Beams	94	
		(a) Elastic Behavior	94	
		(b) Inelastic Behavior	96	
			yi.	

	(c) Impact of Residual Stresses on Flexural Behavior	101
	(d) Idealization of the Moment Curvature Relationship	108
	(e) Predicting the Plastic Plateau by Elastic-Based Analysis	109
	(f) ASDE and ASDP Codification of Flexural Strength	115
	(g) LRFD Codification of Flexural Strength	117
	(h) LRFD Codification of Shear Strength	118
2.2	Idealizing the Flexural Behavior of Determinate Beam Systems	119
	(a) Strength	120
	(b) Elastic Deformation	127
	(c) Inelastic Deformation	132
	(d) Plastic Deformation	133
	(e) Codification of Plastic Behavior	144
2.3	Indeterminate Systems	150
	2.3.1 Alternative Design Procedures	151
	(a) ASDE Specifications	151
	(b) ASDP Specifications	152
	(c) LRFD Specifications	152
	(d) A Comparison of Conclusions	153
	2.3.2 Serviceability Considerations	154
	(a) A Methodology for Predicting the Postyield	
	Behavior of a Beam at Mechanism	154
	(b) Predicting the Sequence of Hinge Formation and	455
	Postyield Deflection of a Beam	157
	2.3.3 Estimating Mechanism Loads by Approximate	1/2
	Techniques	163
	2.3.4 Multispan Beam System	166
	(a) Systems of Constant Strength	166
	(b) Systems of Variable Strength	170
	2.3.5 Serviceability of Multispan Beam Systems	173
	2.3.6 Stability Parameter for Indeterminate Systems	183
	(a) Actual Elastic Limit State for the Member	183
	(b) Idealized Elastic Limit State for the System	184
	(c) Plastic Limit State(d) The LRFD Strain-Based Capacity Criteria	184 185
24	Composite Beams	186
	2.4.1 Determinate Beam Systems	189
	(a) Behavior of Composite Beam Systems	189
	(b) Nominal Strength of Composite Beam Systems	192
	(c) ASDE Composite Beam Design Procedures and	1,2
	Codification	193
	(d) A Constructibility/Serviceability-Based Design	2,0
	Procedure (ASDE)	195
	(e) LRFD Composite Beam Design Procedures and	170
	Codification	197
	(f) Horizontal Shear Transfer	200
	2.4.2 Indeterminate Beam Systems	207
	(a) Continuous Composite Beam Systems	207
	(b) Mechanism Methods	211
2.5	Estimating Vibration Characteristics of Floor Systems	220

		C	ontents	xiii
3	STA	ABILITY		238
	3.1	Axial Stability (a) Elastic Systems—Euler Buckling Load		239 239
		(b) Elastic Systems—Impact on Boundary Conditions		242
		(c) Elastic Systems—Frame Stability		243
		(d) Inelastic Behavior—Buckling Load		246
	3.2	Codification of the Stability Limit State for Columns		249
		(a) Terminology Used in the Codification Process		249
		(b) The Codification Process		251
	3.3	Design Aids		256
		(a) Pinned/Pinned Boundary Conditions		256
		(b) Unknown Boundary Conditions		259
		(c) Impact of Inelastic Behavior on Boundary Conditions (d) Impact of Secondary ($P\Delta$) Effects on Frame Stability		264 268
	3.4	Stability of Plates		269
		(a) Elastic Stability Theory		270
		(b) Postyield Strain States $\varepsilon > \varepsilon_{\nu}$		274
		(c) The Codification Process		275
		(d) Postyield Stability—Columns		280
	3.5	Torsion		281
		3.5.1 Theory		281
		(a) Circular Sections		281
		(b) Saint-Venant Torsion—Noncircular Sections		283
		(c) Warping Torsion(d) Behavior of a Wide Flange Beam Subjected to	a	285
		Uniform Torque		288
		3.5.2 Predicting the Angle of Twist in a Wide Flange Bea	m	296
		(a) Flange Bending Analogy		296
		(b) Differential Equation Alternatives		299
	3.6	Torsional Stability of Beams		302
		(a) Elastic Flexural Stability Theory		303
		(b) Codification Considerations—Elastic and Inelastic		207
		Behavior Range		307
		(c) Codification Considerations—Plastic Behavior Range(d) Objectives of Brace Development		317 321
		(e) Codification in Summary		321
		(f) The Development of Bracing Programs and Details		336
	3.7	Combined Axial Load and Bending		346
		3.7.1 Predicting Secondary Moment Effects		347
		(a) Beam-Columns Subjected to Transverse Load		347
		(b) Beam-Columns Subjected to End Moments		352
		(c) Frames Subjected to Sidesway		357
		(d) Summary		364
		3.7.2 Predicting the Strength and Stability Limit States of	the	275
		Beam-Column		365
		(a) Strength Limit State (b) Stability Limit States		366 370
		(b) Stability Limit States		3/0

		3.7.3 Codification of Beam-Column Limit States	380
		(a) ASDE	380
		(b) ASDP	381
		(c) LRFD	381
		(d) Biaxial Bending Considerations	383
		3.7.4 Example Problems	383
4	BE	HAVIOR OF BRACING SYSTEMS	407
	4.1	Concepts in Force Distribution—Frame Structures	409
	4.2	Concepts in Drift Assessment—Frame Structures	419
		(a) Single-Story, One-Bay Frame	419
		(b) Multistory, Single-Bay Frames	426
		(c) Multistory, Multibay Frames	432
		(d) Impact of Nonuniform Interior Bays on Shear Distribution	435
	4.3	Influence on Frame Drift of Special Conditions	441
		4.3.1 Beam-to-Column Joint Considerations	441
		(a) Impact on Subassembly Stiffness	441
		(b) Contribution to Subassembly Drift	444
		4.3.2 Influence of Distributed Loading on Frame Drift	
		Prediction	448
		4.3.3 Composite Construction—A Means of Controlling the	
		Flexural Component of Frame Drift	451
		(a) Impact of Composite Construction on Frame	
		Stiffness	452
		(b) Design Aids that Facilitate Frame Design Utilizing	
		Composite Construction	453
		4.3.4 The Conceptual Design of Frames to a Drift Criterion—	455
		Some Examples	455
	4.4	Deflection of Axially Braced Systems	473
		4.4.1 Diagonally Braced Systems with Exclusively Axial Load	
		Paths	473
		(a) Single-Story, One-Bay Diagonal Braces	473
		(b) Multistory, Single-Bay, Diagonally Braced Systems	477
		4.4.2 Eccentrically Braced Systems	478
		(a) Elastic Behavior—Single Brace	478
		(b) Elastic Behavior—Two Braces per Bay	482
	4.5	Postyield Deflection Considerations	484
		(a) One-Story Frame	485
		(b) Multistory Frame—Story Ductility	488
		(c) Multistory Frame—System Ductility	490
	4.6	Bracing Concepts for Very Tall Buildings	492
		4.6.1 Core-Braced Stabilized Systems—Conceptual Design by	
		Subassembly	492
		(a) Developing the Subassembly	492
		(b) Subassembly Drift Attributable to Frame Flexural	107
		Deformation	496
		(c) Subassembly Drift Attributable to Stabilizing Truss Deformation	497
		(d) Accounting for Panel Zone Deformation	501
		(u) Accounting for Lanci Lone Deformation	JUI

		Contents	xv
		4.6.2 Design Confirmation by Computer Component Influence	
		Methods	504
		4.6.3 Tube Structures	507
		(a) Effect of Beam Characteristics on Shear Lag	507
		(b) Effect of Beam Location on Shear Lag	508
		(c) Effect of Multiple Flange Columns	511
		(d) Parameters that Affect Load Redistribution	513
	4.7	Dynamic Behavior of Buildings	513
		4.7.1 Response of a Single Degree of Freedom System	
		Subjected to Ground Motion	514
		(a) Numerical Procedures	514
		(b) Dynamic Signature, T	517
		(c) Damping	520 523
		(d) Inelastic Response(e) PΔ Effects	524
		4.7.2 Response Spectra	526
		(a) Elastic Response Spectra	526
		(b) Characteristics of Response Spectra	528
		(c) Inelastic Spectra	530
		4.7.3 Multidegree of Freedom Systems	533
		(a) Time History Analysis	533
		(b) Inelastic Response	534
		(c) Response Spectra as a Design Tool for Multistory	
		Buildings	538
		4.7.4 Estimating Building Periods	545
		(a) Customized Raleigh Approach	545
		(b) System Specific Period Confirmation	548
		(c) System Specific Methods	554
		4.7.5 Quantification of Objective System Ductility	557
5	DE	VELOPING THE DESIGN OF A DUCTILE FRAME	566
	5.1	Criterion Development	567
		5.1.1 The Use of Codified Procedures in the Development of	
		an Earthquake Loading Criterion	569
		(a) 1985 UBC Criterion	569
		(b) 1992 UBC Criterion	574
		5.1.2 The Use of a Response Spectra in the Development of	
		an Earthquake Loading Criterion	577
		5.1.3 The Development of a Wind Loading Criterion	579
		5.1.4 A Behavior State Criterion	580
	5.2	Conceptual Design of a Ductile Frame	582
		5.2.1 Conceptual Design to an Earthquake Criterion	582
		(a) Frame Size	582
		(b) Beam and Interior Column Selection	592
		(c) Frame Flange (Exterior) Column Selection (d) Restried Behavior Considerations	595 507
		(d) Postyield Behavior Considerations5.2.2 Conceptual Design of an Irregular Ductile Frame to a	597
		Wind Criterion	600
		(a) Shear Distribution—Unequal Bays	601
		(b) Column Selection	608
		\-, 	,,,,

		5.2.3 Design Optimization by Computer Component Influence Analysis	611
	5.3	Design Development	618
	5.5	5.3.1 Criterion Identification	618
		(a) Strength Criterion	618
		(b) Drift Criterion	620
		(c) Member Acceptability Criterion	620
		5.3.2 Developing the Appropriate Beam Sizes	620
		(a) Strength	620
		(b) Drift Considerations	621
		(c) Panel Zone Deformations	622
		5.3.3 Column Selection	623
		(a) Strength Criterion—Mechanism Basis	623
		(b) Strength Criterion—Prescriptive Basis	626
		(c) Column Selection Process—Lower Tiers(d) Column Selection Process—Uppermost Tier	629 632
		5.3.4 Drift Criterion Compliance and Value Engineering	032
		Considerations	634
	5.4	Connector Design and Detailing Considerations	640
	3.4	5.4.1 Seismic Frame—Beam-to-Column Connectors	641
		(a) Shear Transfer from Beam to Column	641
		(b) Flexural Load Transfer	644
		(c) Panel Zone Shear	648
		(d) Detailing the Doubler Plate	655
		5.4.2 Wind Frame—Beam-to-Column Connections	658
		5.4.3 Stabilizing System Components	663
		(a) Selecting a Criterion for Stabilizing the Frame Beam	663
		(b) Detailing the Frame Beam Brace	668
		(c) Stabilizing the Frame Column	670
		5.4.4 Column Connections	672
		(a) Column-to-Column Connections	672
		(b) Frame-to-Column Base Connections	677
	5.5	Design Verification	684
		5.5.1 Sequential Yield Analysis	685
		(a) Behavior Idealization(b) PΔ Effects	687 689
		(c) Predicting Component Strain Levels	691
		5.5.2 Time History Analysis	693
		(a) Displacement Response—MPE	695
		(b) Ductility Demand—MPE	697
		(c) Displacement Response—MCE	699
		(d) Ductility Demand—MCE	700
		(e) Design Implications	702
6		ARTISTIC ASPECTS OF	
	STF	UCTURAL ENGINEERING	707
	6.1	Single-Story Design Problem	708
		(a) Problem Description	708
		(b) Design Procedure	709

		Contents	xvii
	6.1.1 Single Bay—Ductile Frame Solution .		710
	(a) Fixed Base		710
	(b) Pinned Base		717
	6.1.2 Two Bay—Ductile Frame Solution		718
	(a) Three Seismic Column Frame		718
	(b) Single Seismic Column Frame		719
	6.1.3 Braced System		723
6.2	Eccentrically Braced Frame—Two-Story Applications		727
	6.2.1 Design Objectives		728
	6.2.2 EBF Fundamentals		728
	(a) Characterizing Link Behavior		728
	(b) Predicting Subassembly Behavior		731
	6.2.3 Two-Story Design—Problem		733
	(a) Ductile Frame Alternative		734
	(b) Flexure Dominant EBF Alternative		74 0
	(c) Pure Shear EBF Alternative		745
	6.2.4 Development of the Design of an EBF		758
	(a) Mechanism Strength		758
	(b) Component Sizing		761
	(c) System Behavior		762
	(d) Beam-to-Brace Connector		765
	(e) Brace-to-Beam-to-Column Connection		767
	(f) Link Detailing		773
	(g) Stabilizing the EBF and its Components		774
6.3	Designing Axial Bracing Systems Which Are Not Brittle		774
6.4	Strengthening Existing Structures		781
	6.4.1 Problem Statement		781
	6.4.2 Design Procedure		782
	6.4.3 System Identification		783
	6.4.4 Conceptual Design		784
	(a) Ductile Frame Alternative		785
	(b) X-Braced Alternative		795
	(c) EBF Alternative		796
	(d) System Selection		800

803

Index