Contents

Preface

1 PRESTRESSING METHODS

1-1	Introduction	T
1-2	General Design Principles	2
1-3	Prestressing with Jacks	4
1-4	Pre-tensioning	5
1-5	Post-tensioning with Tendons	6
1-6	Pre-tensioning vs Post-tensioning	7
1-7	Linear vs Circular Prestressing	8
1-8	Application of Prestressed Concrete	9

2 STEEL FOR PRESTRESSING

2-1	1 Introduction	11
2-2	2 Stress-Relieved Wire	13
2-3	3 Stress-Relieved Strand	14
2-4	4 High-Tensile Strength Bars	18
2-	5 Yield Stress	19
2-0	6 Plasticity	21
2-7	7 Relaxation and Creep	21
2-8	8 Corrosion	25

2-9 Application of Steel Types	27
2-10 Idealized Tendon Material	28
2-11 Allowable Steel Stresses	29

3 CONCRETE FOR PRESTRESSING

3-1	Introduction	31
3-2	Cement Type	32
3-3	Admixtures	32
3-4	Slump	33
3-5	Curing	34
3-6	Concrete Aggregates	34
3-7	Strength of Concrete	35
3-8	Elastic Modulus	38
3-9	Shrinkage	40
3-10	Estimating Shrinkage	46
3-11	Creep of Concrete	51
3-12	Relaxation of Concrete	58
3-13	Low-Pressure (Atmospheric Pressure) Steam Curing	59
3-14	Cold Weather Concrete	62
3-15	Allowable Concrete Flexural Stresses	63

4

4-1	Introduction	67
4-2	Mathematical Relationships for Prestressing Stresses	69
4-3	Pressure Line in a Beam with a Straight Tendon	73
4-4	Variation in Pressure-Line Location	76
4-5	Pressure-Line Location in a Beam with a Curved Tendon	79
4-6	Advantages of Curved or Draped Tendons	83
4-7	Limiting Eccentricities	91
4-8	Cross-Section Efficiency	95
4-9	Selection of Beam Cross Section	97
4-10	Effective Beam Cross Section	99
4-11	Variation in Steel Stress	105
CRAC	KING LOAD, ULTIMATE MOMENT,	

5 CRACKING LOAD, U SHEAR AND BOND

5-1	Action Under Overloads—Cracking Load	107
5- 2	Principles of Ultimate Moment Capacity for	
	Bonded Members	109

5-3	Principles of Ultimate Moment Capacity for	
	Unbonded Members	120
5-4	Ultimate Moment Code Requirements—Bonded Members	123
5-5	Ultimate Moment Code Requirements—Unbonded	
	Tendons	126
5-6	Shear and Principal Tensile Stresses	128
5-7	Bond of Prestressing Tendons	146
5-8	Bonded vs Unbonded Post-tensioning	153
	-	

6 ADDITIONAL DESIGN CONSIDERATIONS

7

6-1	Introduction	158
6-2	Losses of Prestress	158
6-3	Deflection and Camber	171
6-4	Composite Beams	193
6-5	Beams with Variable Moments of Inertia	196
6-6	Segmental Beams	198
6-7	Partial Prestressing	200
6-8	End Blocks	201
6-9	Spacing of Pre-tensioning Tendons	210
6-10	Pre-tensioning Stresses at Ends of Beams	212
6-11	Bond Prevention in Pre-tensioned Construction	216
6-12	Deflected Pre-tensioned Construction	219
6-13	Combined Pre-tensioned and Post-tensioned Tendons	223
6-14	Buckling Due to Prestressing	224
6-15	Secondary Stresses Due to Tendon Curvature	226
6-16	Variation in Tendon Stresses	228
6-17	Standard vs Custom Prestressed Members	229
6-1 8	Precision of Elastic Design Computations	229
6-19	Load Balancing	230
DESIC METH	IN EXPEDIENTS AND COMPUTATION	
7-1	Introduction	233
7-2	Computation of Section Properties	234
7-3	Allowable Concrete Stresses to be Used in	
	Design Computations	239
7-4	Limitations of Sections Prestressed with	
•	Straight Tendons	242
7-5	Limitations of Sections Prestressed with Curved Tendons	244
7-6	Determination of Minimum Prestressing Force for	
	Straight Tendons	245

CONTENTS

	7-7	Determination of Minimum Prestressing Force for	
		Curved Tendons	250
	7-8	Estimating Prestressing Force and Cross-Sectional	
		Characteristics	257
	7-9	Reduction in Shear Force Due to Curvature of	A (1)
		Parabolic Tendons	264
	7-10	Computing the Location of Pre-tensioning Tendons	265
	7-11	Fiber Stresses at Ends of Prismatic Beams	269
	7 12	Computing the Effects of Bonded Prevention	2/1
	/-13	Organization and Abbreviation of Computations	271
8	CONT	INUITY IN PRESTRESSED CONCRETE	
		JRAL WEWDERS	274
	0-1 0-1	Disadvantages of Continuity	274
	0-2	Methods of Framing Continuous Beams	275
	0-3 8-4	Continuous Prestressed Slabs	270
	8-5	Elastic Analysis of Beams with Straight Tendons	201
	8-6	Flastic Analysis of Beams with Straight Tendons	203
	8-7	Additional Elastic-Design Considerations	303
	8-8	Flastic Design Procedure	307
	8-9	Limitations of Elastic Action	317
	8-10	Analysis of Ultimate Loads	321
	8-11	Additional Considerations	325
	8-12	Continuous Beams Utilizing Prestressed Beam Soffits	326
	8-13	Continuous Beams Constructed in Cantilever	327
9	DIRE	CT STRESS MEMBERS, TEMPERATURE AND	
	9-1	Introduction	330
	9-2	Tension Members or Ties	330
	9-3	Columns and Piles	334
	9-4	Fire Resistance	340
	9-5	Normal Temperature Variations	342
	9- 6	Fatigue	343
10	CRAC	CKING AND OTHER DEFECTS—THEIR SES AND REMEDY	
	10-1	Introduction	347
	10- 2	Cracking	347
	10-3	Restraint of Volume Changes	356

10-4 Honeycombing	359
10-5 Buckling	359
10-6 Camber-Deflection	372
10-7 Corrosion of Prestressing Steel	374
10-8 Concrete Crushing at End Anchorages	375
10-9 Deterioration	376
10-10 Grouting of Post-tensioning Tendons	376
10-11 Damage Due to Couplers	376
10-12 Wedge-Type Dead Ends	377
10-13 Looped or Pig Tail Dead Ends	378
10-14 Congested Connections	379
10-15 Inadequate Welding	379
10-16 Dimensional Tolerances	379

11

11-1	Introduction	382
11-2	Double T Slabs	383
11-3	Single T Beams or Joists	387
11-4	Long-Span Channels	388
11-5	Prestressed Joists	390
11-6	Solid Precast Slabs	391
11-7	Precast Hollow Slabs	392
11-8	Cast-in-Place Prestressed Slabs	393
11-9	Other Types of Framing	396
11-10	Continuity in Precast Construction	399

12 BRIDGE CONSTRUCTION

12-1	Introduction	400
12-2	Short-Span Bridges	406
12-3	Bridges of Moderate Span	409
12-4	Long-Span Bridges	414
12-5	Bridges of Special Types	416

13 CONNECTIONS FOR PRECAST MEMBERS

13-1	General	420
13-2	Computation of Horizontal Forces	422
13-3	Corbels	423
13-4	Column Heads	429
13-5	Post-tensioned Connection	432

CONTENTS

14

13-6 Other Beam Connections	433
13-7 Column Base Connections	435
13-8 Elastomeric Bearing Pads	436
13-9 Other Expansion Bearing Pads	439
13-10 Fixed Steel Bearings	439
13-11 Wind/Seismic Connections	440
13-12 Shear-Friction Connections	442
PRE-TENSIONING EQUIPMENT AND PROCEDURES	

14- 1	Introduction	444
14-2	Pre-tensioning with Individual Molds	445
14-3	Pre-tensioning Benches	445
14-4	Stressing Mechanisms and Related Devices	452
14-5	Forms For Pre-tensioned Concrete	459
14-6	Tendon-Deflecting Mechanisms	462

15 POST-TENSIONING SYSTEMS AND PROCEDURES

15- 1	Introduction	469
15- 2	Description of Post-tensioning Systems	470
15-3	Sheaths and Ducts for Post-tensioning Tendons	475
15-4	Forms for Post-tensioned Members	478
15 -5	Effect of Friction During Stressing	480
15-6	Elastic Deformation of Post-tensioning Anchorages	482
15-7	Computation of Gauge Pressures and Elongations	487
15-8	Construction Procedure in Post-tensioned Concrete	490
15-9	Construction of Multi-element Beams	492

16 ERECTION OF PRECAST MEMBERS

16-1	General	496
16-2	Truck Cranes	496
16-3	Crawler Cranes	501
16-4	Floating Cranes	501
16-5	Girder Launchers	501
16-6	Falsework	505
16-7	Cable Ways and Highlines	507
16 -8	Towers	507

Ŧ		1		
	n	n	ρ	Y

51