Contents | Cnapter 1 | Challenge of Green Remediation of Water Anuradha Mishra and James Clark | | | | | | |-----------|--|--|--------|--|--|--| | | 1.1 | Introduction | 1 | | | | | | | Green Remediation (Greening the Blue) | 4
5 | | | | | | 1.3 Policy Directives for Water Remediation and Re | | | | | | | | 1.4 | 1.4 Eco-Labels and Standards | | | | | | | 1.4.1 Globalization of Green Labels | | | | | | | | 1.5
1.6 | Ecological and Economic Considerations Conclusions and Future Directions | 8
9 | | | | | | | erences | 9 | | | | | | Kere | ences | 9 | | | | | Chapter 2 | Green Materials for Sustainable Remediation of Metals in Water R. K. Sharma, Alok Adholeya, Manab Das and Aditi Puri | | | | | | | | 2.1 | Introduction | 11 | | | | | | 2.2 | The Biological Solution | 13 | | | | | | | 2.2.1 Phytoremediation | 13 | | | | | | | 2.2.2 Bioremediation | 17 | | | | | | | 2.2.3 Types of Microbial Agents | 18 | | | | | | 2.3 | The Chemical Solution | 21 | | | | | | | 2.3.1 Chemical Precipitation | 21 | | | | | | | 2.3.2 Ion Exchange | 22 | | | | | | | 2.3.3 Liquid-Liquid Extraction | 23 | | | | | | | 2.3.4 Electrodialysis | 23 | | | | | | - 4 | 2.3.5 Solid Phase Extraction | 24 | | | | | | | Conclusion | 26 | | | | | | Refe | erences | 26 | | | | RSC Green Chemistry No. 23 Green Materials for Sustainable Water Remediation and Treatment Edited by Anuradha Mishra and James H. Clark Published by the Royal Society of Chemistry, www.rsc.org [©] The Royal Society of Chemistry 2013 xii Contents | Chapter 3 | Role of Plant Biomass in Heavy Metal Treatment of
Contaminated Water
Rajani Srinivasan | | | | |-----------|--|--|--|--| | | 3.1 Introduction 3.2 Various Types of Biomass Used for Metal Removal 3.3 Conclusions References | 30
31
48
48 | | | | Chapter 4 | Natural Polysaccharides as Treatment Agents for Wastewater Rajani Srinivasan | | | | | | 4.1 Introduction 4.2 Flocculation 4.2.1 Charge Neutralization Flocculation 4.2.2 Bridging Flocculation 4.2.3 Electrostatic Patch Mechanism 4.2.4 Sweep Floc Mechanism 4.3 Flocculants 4.3.1 Polysaccharide-Based Flocculants 4.4 Plant-Derived Polysaccharides 4.5 Animal-Based Polysaccharides 4.6 Microorganism-Based Polysaccharides 4.7 Conclusions References | 51
53
53
54
55
55
56
57
59
66
70
74
75 | | | | Chapter 5 | Zeolites in Wastewater Treatment Abha Dubey, Deepti Goyal and Anuradha Mishra | 82 | | | | | 5.1 Introduction 5.2 Synthesis and Properties of Zeolites 5.3 Modification of Natural Zeolites 5.3.1 Modification by Surfactants 5.3.2 Modification by Acid/Base Treatment 5.4 Synthetic Zeolites 5.4.1 Synthesis of Zeolites from Natural Materials 5.4.2 Synthesis of Zeolites from Industrial Wastes 5.5 Wastewater Treatment by Zeolites 5.5.1 Water Softening 5.5.2 Ammonia Removal 5.6 Conclusion | 82
83
85
86
87
88
88
89
90
91 | | | | | References | 98 | | | Contents xiii | Chapter 6 | Functionalized Silica Gel as Green Material for Metal
Remediation
R. K. Sharma, Garima Gaba, Anil Kumar and Aditi Puri | | | |-----------|---|------------|--| | | 6.1 Introduction | 105 | | | | 6.2 Benefits of Chelating Sorbents | 107 | | | | 6.3 Silica Gel: An Ideal Support Material | 107 | | | | 6.4 Functionalization of Silica Gel | 108 | | | | 6.4.1 Surface Chemistry of Silica Gel | 108 | | | | 6.4.2 Chemical Modification of the Silica Surface6.5 Analytical Applications of Modified Silica Gels | 108 | | | | as Chelating Sorbents | 109 | | | | 6.6 Conclusion | 130 | | | | References | 131 | | | Chapter 7 | Nanomaterials for Water Remediation | 135 | | | | Deepti Goyal, Geeta Durga and Anuradha Mishra | | | | | 7.1 Introduction | 135 | | | | 7.2 Contamination in Water and Remediation Techniques | 136 | | | | 7.3 Nanotechnologies in Water Remediation | 138 | | | | 7.3.1 Carbon Nanotubes | 138 | | | | 7.3.2 Graphene | 140 | | | | 7.3.3 Fullerenes | 142 | | | | 7.3.4 Nanocrystalline Zeolites | 143 | | | | 7.3.5 Magnetic Nanoparticles | 144 | | | | 7.3.6 Silver Nanoparticles | 146 | | | | 7.3.7 TiO ₂ Nanoparticles | 147 | | | | 7.3.8 Bimetallic Nanoparticles | 147 | | | | 7.3.9 Single Enzyme Nanoparticles 7.3.10 Dendrimers | 148
149 | | | | 7.3.10 Dendrimers 7.3.11 Nanomembranes | 150 | | | | 7.4 Conclusion | 150 | | | | References | 152 | | | Chapter 8 | Applications of Ionic Liquids in Metal Extraction Geeta Durga, Deepti Goyal and Anuradha Mishra | | | | | oteta Darga, Beeph Goyar ana Anaraana Misha | | | | | 8.1 Introduction | 155 | | | | 8.2 What Are Ionic Liquids? | 156 | | | | 8.3 Ionic Liquids for Metal Extraction | 157 | | | | 8.4 Types of Ionic Liquids for Metal Extraction | 159 | | | | 8.4.1 Imidazolium Ionic Liquids | 159 | | | | 8.4.2 Quaternary Ammonium Ionic Liquids | 160 | | | | 8.4.3 Phosphonium Ionic Liquids | 161 | | xiv Contents | | | 8.4.4 | Pyridinium Ionic Liquids | 161 | |------------|-------|-------------|--|-----| | | | 8.4.5 | Pyrrolidinium Ionic Liquids | 162 | | | 8.5 | Extracti | on of Different Types of Metal Ions | 162 | | | | 8.5.1 | Alkali Metals and Alkaline Earth Metals | 163 | | | | 8.5.2 | Transition Metals | 164 | | | | 8.5.3 | Rare Earth Metals | 168 | | | 8.6 | Mechan | ism for Metal Extraction | 172 | | | | 8.6.1 | Cationic Mechanism | 172 | | | | 8.6.2 | Anionic Mechanism | 175 | | | | 8.6.3 | Multi-Mode Mechanism | 175 | | | 8.7 | Conclus | ion and Future Prospects | 176 | | | Refe | rences | | 177 | | Chapter 9 | Perip | hyton Bio | ofilms for Sustainability of Aquatic | | | | Ecos | ystems | | 181 | | | Yong | hong Wu | | | | | 9.1 | Introduc | ction | 181 | | | | 9.1.1 | Periphyton Biofilm | 181 | | | | 9.1.2 | Composition and Structure of Periphyton | | | | | | Biofilm | 181 | | | | 9.1.3 | Periphyton Biofilms Included in this Chapter | 184 | | | 9.2 | Treatme | ent of Water and Wastewater | 184 | | | | 9.2.1 | Nutrient Removal | 184 | | | | | Č | 188 | | | 9.3 | Relation | nship of Phosphorus Release, Cyanobacterial | | | | | Bloom, | and Periphyton Biofilms | 201 | | | | 9.3.1 | Inhibition of Phosphorus Release from | | | | | | Sediments | 201 | | | | 9.3.2 | Control of Cyanobacterial Bloom | 202 | | | 9.4 | Potentia | l of Periphyton Biofilm Applications | 205 | | | Refer | rences | | 206 | | Chapter 10 | Reme | ediation of | f Dye Containing Wastewater Using Viable | | | , | | Biomass | | 212 | | | | | li and Tanvi Vats | | | | 10.1 | Introduc | ction | 212 | | | | | Dyes as Water Polluters | 213 | | | | 10.1.2 | Methods of Dye Removal | 215 | | | 10.2 | Biosorp | tion of Dyes by Live Algal Biomass | 219 | | | | 10.2.1 | Removal of Dyes by Spirogyra Species | 219 | | | | 10.2.2 | Removal of Dyes by Live Microalgal Species | 221 | | | | 10.2.3 | Removal of Dyes by Chlorella vulgaris | 224 | Contents xv | 10.3 Conclusion and Future Perspectives References | | | | 225
226 | |--|-------|----------|--|------------| | Chapter 11 | Remo | val of O | ing Surfactant Modification of Solid Media for xo Ions dgers and Kiril D. Hristovski | 229 | | | 11.1 | Introdu | ection | 229 | | | 11.2 | Behavio | or of Surfactants in Aqueous Systems | 230 | | | 11.3 | Factors | Affecting Surfactant Modification of Solid | | | | | Media | for the Removal of Oxo Ions | 232 | | | | 11.3.1 | Influence of Specific Surface Area on | | | | | | Surfactant Modification of the Sorbent | | | | | | Media | 232 | | | | 11.3.2 | Influence of Surface Charge/Ion-Exchange | | | | | | Capacity on Surfactant Modification of | | | | | | the Sorbent Media | 233 | | | | 11.3.3 | Influence of Porosity and Pore Size | | | | | | Distribution on Surfactant Modification of | | | | | | the Sorbent Media | 234 | | | | 11.3.4 | Influence of Surfactant Properties on | | | | | | Surfactant Modification of the Sorbent | | | | | | Media | 235 | | | 11.4 | Conclu | sions | 236 | | | Refer | ences | | 236 | | Subject Inde | ex | | | 242 |