Contents and Subject Index

INTRODUCTION

UPDATE ON EPA'S SLUDGE POLICY AND NEW SEWAGE SLUDGE	
REGULATIONS	2
Robert Bastian	

LAND TREATMENT

BEST AVAILABLE TECHNOLOGY FOR DESIGN AND SITING FOR LAND	
APPLICATION OF WASTEWATER ON THE RATHDRUM PRAIRIE—	
KOOTENAI COUNTY, IDAHO	8
John Sutherland	
Introduction	8
Background	9
Best Available Technology	10
Hydrogeology	10
Climate	11
Soils	11
Wastewater Characterization	12
Pilot Project	12
Conclusion	13
SAND AND GRAVEL FILTERS	
SAND FILTERS: STATE OF THE ART	16
Harold L. Ball	
THE TENNESSEE EXPERIENCE WITH THE RECIRCULATING SAND	
FILTER WASTEWATER TREATMENT SYSTEM FOR SMALL FLOWS	21
Steve Fishel	
Historical Small Flow (Package Plant) Problem	21
Evolution of the Recirculating Sand Filter	22

Other Agency Actions to Improve Package Plant Alternative Designs	24
Conclusions	27
RECIRCULATING GRAVEL FILTERS IN OREGON	28
Jim Van Domelen	20
Introduction	28
Monitoring Requirements	28
Design Criteria	31
Operation and Maintenance	31
-	31
Examples from Oregon Conclusions	31
Conclusions	-/1
OPERATION AND MAINTENANCE	
ASSESSMENT OF O&M REQUIREMENTS FOR UV DISINFECTION	40
O. Karl Scheible	
Description of the UV Systems at the Selected Plants	41
Design Sizing and Performance Summary for the Selected Plants	44
Summary of O&M Practices at Selected Plants	44
Summary of UV Cleaning Practices at Selected Plants	51
Frequency and Labor Requirements for Cleaning	55
TRICKLING FILTER OPERATION AND MAINTENANCE ISSUES	56
Russell J. Martin	
Fredericktown, Ohio	56
Dupo, Illinois	57
Linton, Indiana	58
Johnstown, Ohio	59
Summary	60
IDDATE ON THE MICDODIAL DOCK BLANT EILTED (MDDE)	61
UPDATE ON THE MICROBIAL ROCK PLANT FILTER(MRPF)	01
Ancil J. Jones Scientific Basis	61
	63
Definition	63
Plant Functions: Aquatic Plants Translocate Oxygen	63
Aquatic Plants Absorb Organic Molecules	65
Natural Regenerative Habitat	
Removal of Suspended Solids	65
Growing Plants	65
Plant Management	65
Assign Volume of Filter to Roots	67
Design	67
Design Considerations	67
Design Objective(s)	70
Plant Criteria	70
Evaporation/Transpiration	70
Recirculation Provision	70
Drainage Provision	70
Measure the In-Place Void Ratio	70

Measure Detention Time	70
In-Place Void Ratio Adjustment	70
Measure Dissolved Oxygen	71
Design Criteria from Developed Technology May Be Suitable for	
Technology Transfer Under Certain Conditions	71
How to Determine Acceptability for Design Criteria Transfer	71
Risk versus Potential State-of-the-Art Advancement	72
Construction Cost	72
Operation and Maintenance	72
Performance	72
Technology Assessment	72
Problems in Design	72
Sustainable Development	72
A Challenge to Central and Regional Systems	74
Innovation via Imagination	74
References	74
BIOLOGICAL NUTRIENT REMOVAL	
BIOLOGICAL NUTRIENT REMOVAL	76
Glen Daigger	
Overview	76
OPERATION OF ANOXIC SELECTOR ACTIVATED SLUDGE SYSTEMS FOR NITROGEN REMOVAL AT ROCK CREEK AND TRI-CITY WASTEWATER TREATMENT PLANTS Gordon A. Nicholson	83
Overview	83
SUMMARY OF PATENTED AND PUBLIC BIOLOGICAL PHOSPHORUS	
REMOVAL SYSTEMS	90
	00
Patent Search—1960–1990	90
BPR Processes in Public Domain	91
Future Outlook	93
SLUDGE	
CASE STUDY EVALUATION OF ALKALINE STABILIZATION PROCESSES	96
Lori A. Stone	
CONTROLLING SLUDGE COMPOSTING ODORS William G. Horst and Bert deVries	102
TOTAL RECYCLING	105
Dale Cap	
Background	105
Sludge Quantity	105
Composting	106

STORMWATER

WASHINGTON STATE'S APPROACH TO COMBINED SEWER	
OVERFLOW CONTROL	108
Ed O'Brien	
Introduction	108
Overview of the Statute and Regulation	108
Documentation of CSO Activity	110
Evaluation of Control/Treatment Alternatives	110
Analysis of Proposed Alternatives	111
Ranking and Scheduling of Projects	111
Schedule Updates: Monitoring and Reporting	
Rationale for Selection of One Untreated Discharge per Year per Site	
and Minimum of Primary Treatment	112
Minimum Treatment and Control Methods Identified	113
Maximum Allowable Frequency of Untreated Discharge Selected	113
"Reasonable" Economics Accommodated Through Compliance Schedules	114
NATIONAL COST FOR COMBINED SEWER OVERFLOW CONTROL .	115
Atal Eralp, Norbert Huang, Michael Denicola, Robert Smith and Tim Dwyer	
Background	115
CSO Wastewater Characteristics	115
CSO Wastewater Impacts	115
Existing CSO Control Authorities	116
Key CSO Issues	116
Alternative CSO Control Options	117
Option 1: Implementation of EPA 1989 CSO Control Strategy	118
Option 2: Legislative Action	118
Option 3: Combined Sewer Overflow Control Act	119
Option 4	120
CSO Control Technologies	121
Cost Estimates	121
Estimates Based on Needs Surveys	122
Estimates Based on Capture and Treatment of a Design Storm	122
Other Estimates	123
Conclusions	123
STORMWATER CONTROL FOR PUGET SOUND	
Peter B. Birch	
The Puget Sound Water Quality Management Plan	124
Local Stormwater Program	124
Technical Manual	126
Puget Sound Highway Runoff	127
DISINFECTION	

TOTAL RESIDUAL CHLORINE—TOXICOLOGICAL EFFECTS AND FATE IN FRESHWATER STREAMS IN NEW YORK STATE Gary N. Neuderfer

Study Methods	131
In-Stream TRC Versus Dilution	132
Kilometers of Stream Affected	134
Diel In-Stream TRC Concentrations	134
In Situ TRC Toxicity to D. magna and Fathead Minnow	134
Fate of Free Versus Combined Chlorine	135
Summer Versus Winter TRC	136
Compliance with SPDES TRC Permit Limits	136
EPA DISINFECTION POLICY AND GUIDANCE UPDATE	137
Robert Bastian	
State/EPA Task Force	137
Task Force Findings and Conclusions	137
Proposed Revised Policy Language	139
Results of Task Force Policy Review	130
CONSTRUCTED WETLANDS	
USE OF CONSTRUCTED WETLANDS TO TREAT DOMESTIC	
WASTEWATER, CITY OF ARCATA, CALIFORNIA	142
Robert A. Gearheart	
Introduction	142
Surface-Flow Wetlands-General	143
Subsurface Flow Wetlands—General	143
Surface Flow Wetlands—Natural	143
Constructed Wetlands—Specific	144
BOD	144 147
Suspended Solids	147
Nitrogen and Phosphorus	149
Fecal Coliform Removal	153
Engineering Approach	155
Water Depth	155
Cell Construction	155
Drainage Points Within Cells	155
Inlet Systems	156
Outlet Systems	156
Rhizome Planting	156
Soil Composition	156
Temperature	157
Botanical Input	157
Plant Species Suitability	157
Odors	157
Final Segment Polishing	158
Summary	159
References	159
CONSTRUCTED WETLANDS EXPERIENCE IN THE SOUTHEAST	163

Robert J. Freemân Jr.

MUNICIPAL WATER USE EFFICIENCY

HOW EFFICIENT WATER USE CAN HELP COMMUNITIES MEET	
ENVIRONMENTAL OBJECTIVES	174
Stephen Hogye	
Problem	174
Background	174
Research Approach	175
Water Efficiency Techniques and System Responses	175
Study Findings	176
IMPACT OF INDOOR WATER CONSERVATION ON WASTEWATER	
CHARACTERISTICS AND TREATMENT PROCESS—PHASE I STUDY	178
Robert A. Gearheart	
Introduction	178
Water Conservation Techniques	180
Water Use	180
Wastewater	180
Indoor Plumbing Devices	180
Toilets	180 180
Water Conservation Effects on Wastewater Treatment/Collection	180
Wastewater Characteristic Changes	183
Model: Water Conservation Strategies/Wastewater Characteristics	183
Application	183
Slow-Rate Implementation Scenario	186
Medium-Rate Implementation Scenario	186
High-Rate Implementation Scenario	186
Findings	186
Summary	192
References	193
FIXED FILM/SUSPENDED GROWTH SECONDARY TREATMENT SYSTEMS	194
Arthur J. Condren, James A. Heldman and Bjorn Ruster	
Introduction	194
Currently Available High Biomass Systems	194
Site Visits	197
Freising (Linde AG System)	197
Munich (Linde AG System)	197
Olching (Ring Lace System)	198
Schomberg (Bio-2-Sludge System)	199
Calw-Hirsau (Bio-2-Sludge System)	200
System Economics	200
Summary	203
References	205
CHEMICAL PHOSPHORUS REMOVAL IN LAGOONS	207
Charles Pycha	
Introduction	207

Background	207
Region 5 Experience	207
Conclusion	209

APPENDICES

APPENDIX A—AGENDA	212
APPENDIX B—SPEAKER LIST	217
APPENDIX C-LIST OF ADDRESSES FOR REGIONAL AND STATE WASTEWATER TECHNOLOGY, SLUDGE, AND OUTREACH	
COORDINATORS	220
TECHNOLOGY PROJECTS BY STATE	240
APPENDIX E—CURRENT STATUS OF MODIFICATION/REPLACEMENT (M/R) GRANT CANDIDATES BY STATE	246