Contents

		the 2nd Edition the 1st Edition	v vii
1.		roduction	1
2.	Stoichiometry		
	Α.	Units and Fundamental Relationships	5
		1. Units	5
		2. Gas Laws	6
		3. Energy	10
	В.	Systems Analysis	21
		1. General Approach	21
		2. Analyses	23
	C	Material Balances	34
		1. Balances Based on Fuel Analysis	34
		2. Balances Based on Flue Gas Analysis	40
		3. Cross-Checking Between Fuel and Flue Gas Analysis	43
	D.	Energy Balances	43
	E.	Equilibrium	51
	F.	Combustion Kinetics	61
		1. Introduction to Kinetics	61
		2. Kinetics of Carbon Monoxide Oxidation	67
		3 Kinetics of Soot Oxidation	71

X	Contents

		4. Kinetics of Waste Pyrolysis and Oxidation	74	
3.	Sele	84		
	A.	Gaseous Combustion	84	
		1. The Premixed (Bunsen) Laminar Flame	85	
		2. The Diffusion Flame	86	
	В.	Liquid Combustion	89	
		1. Pool Burning	89	
		2. Droplet Burning	91	
	C.	/Solid Combustion	93	
		¹ 1. Thermal Decomposition	96	
		2. Mass Burning Processes	111	
4.	Wa	ste Characterization	112	
	A.	General	113	
		1. Chemistry	113	
		2. Heat of Combustion	117	
		3. Ash Fusion Characteristics	121	
		4. Smoking Tendency	127	
	В.	Solid Waste	128	
		1. Solid Waste Composition	128	
		2. Solid Waste Properties	136	
	C.	Biological Wastewater Sludge	161	
		1. Sludge Composition	163	
		2. Sludge Properties	165	
5.	Cor	172		
	A.	Enclosures	172	
		1. Refractory Enclosure Systems	173	
	•	2. Water Cooled Enclosure Systems	186	
	В.	Heat Transfer	192	
		1. Conduction	193	
		2. Convection	197	
		3. Radiation	197	
		4. Heat Transfer Implications in Design	198	
6.	Flu	Fluid Flow Consideration in Incinerator Applications		
	A.	Driven Flow	200	
		1 Iet Flow	201	

Contents xi

		2. Swirling Flows	240	
	В.	Induced Flow	250	
		1. Jet Recirculation	250	
		2. Buoyancy	256	
	C.	Mixing and Residence Time	259	
		1. Fundamental Distribution Relationships	260	
		2. Common Distribution Functions	260	
		3. Failure Modes	261	
		4. Residence Time Scenarios	262	
7.	Materials Preparation and Handling			
	A.	Solid Wastes	267	
		1. General	267	
		2. Pit and Crane Handling of Solid Wastes	269	
		3. Size Reduction of Municipal Solid Wastes (MSW)	271	
		4. Conveying of Solid Wastes	276	
		5. Size Classification and Screening	282	
		6. Ferrous Metal Separation	286	
	В.	Sludge Handling	287	
		1. General	287	
		2. Sludge Pumping in Pipes	287	
8.	Incineration Systems for Municipal Solid Wastes			
	A.	Collection and Delivery of Refuse	295	
	В.	Refuse Handling and Storage		
	Ċ.	Size Control and Salvage	297	
	D.	Incinerator Feed Systems	298	
	E.	Grates and Hearths	299	
		1. Stationary Hearth	301	
		2. Rotary Kiln	302	
		3. Stationary Grates	302	
		4. Mechanical Grates: Batch Operations	303	
		5. Mechanical Grates: Continuous Operations	304	
		6. O'Conner Rotary Combustor (Kiln)	307	
		7. Fluid Bed Systems	308	
	F.	Incinerator Furnace Enclosures	309	
		1. Refractory Enclosures	310	
		2. Other Enclosure-Related Design Considerations	312	
	G.	Energy Markets and Energy Recovery	322	

		1.	Market Size	322
		2.	Market Type	323
		3.	Market Reliability	324
		4.	Revenue Reliability	324
	H.	Cor	mbustion Air	324
	I.	Asl	n Removal	326
	J.	Flu	e Gas Conditioning	330
		1.	Cooling by Water Evaporation	331
		2.	Cooling by Air Dilution	336
		3.	Cooling by Heat Withdrawal	336
		4.	Steam Plumes	337
	K.	Env	vironmental Pollution Control	340
		1.	Air Pollution	340
		2.	Water Pollution	343
		3.	Noise Pollution	346
	L.	Inc	inerator Stacks	346
	M.	Ref	ruse Derived Fuel Systems	349
		1.	RDF Processing	351
		2.	RDF Combustion Systems	351
	N.	Ope	erations	360
9.	Inc	inera	362	
	A.	Mu	Itiple Hearth Furnace (MHF) Systems	364
		1.	Process Characteristics	364
		2.	Process Relationships	373
	В.	Flu	id Bed Systems	380
		1.	Process Characteristics	382
		2.	Process Relationships (Oxidizing Mode)	387
		3.	Operating Characteristics	396
		4.	General Environmental Considerations	398
	C.	Sla	gging Combustion Systems for Biological Sludge	398
		1.	Kubota System	399
		2.	Itoh Takuma System	400
10.	Inc	inera	402	
	A.	Liq	uid Waste Incinerators	402
		1.	Liquid Storage	402
		2.	Atomization	404
		3.	Ignition Tiles	409

Con	Contents		
		4. Combustion Space	410
		5. Incinerator Types	411
	В.	Incinerators for Gases (Afterburners)	411
		1. Engineering Technology	411
		2. Afterburner Systems	419
		3. Potential Applications	428
11.	Incineration Systems for Hazardous Wastes		
	A.	General	429
		1. Receiving and Storage Systems	432
		2. Firing Systems	433
		3. Control Systems	435
		4. Refractory	435
		5. Evaluation Tests and POHC Selection	438
	В.	Rotary Kiln Systems	441
		1. Sludge Incineration Applications	445
		2. Solid Waste Incineration Applications	446
	C.	Circulating Fluid Bed	451
		1. CFB Hydrodynamics	452
12.	Oth	ner Incineration Systems for Solid Wastes	
	A.	Multiple Chamber (Hearth or Fixed Grate)	458
	В.	Multiple Chamber (Moving Grate)	459
	C.	Starved Air	460
	D.	Open Pit	461
	E.	Conical (Tepee) Type	461
13.	Air	Pollution Aspects of Incineration Processes	462
	A.	Air Pollutants from Combustion Processes	463
		1. Inorganic Particulate	464
		Combustible Solids, Liquids, and Gases	480
		3. Gaseous Pollutants Related to Fuel Chemistry	483
		4. Nitrogen Oxides	486
	В.	Air Toxics	493
		1. Metal Emission Rates	495
		2. Emissions of Organic Compounds	509
14.	Air Pollution Control for Incineration Systems		
	A.	Equipment Options for Incinerator Air Pollution Control	518

		1.	Settling Chambers	518
		2.	Cyclones and Inertial Collectors	519
		3.	Wet Scrubbers	522
		4.	Electrostatic Precipitators	535
		5.	Fabric Filter (Baghouse)	540
		6.	Absorbers	547
		7.	Specialized Abatement Technology	553
	В.	Con	trol Strategies for Incinerator Air Pollutant Control	560
		1.	Air Pollution Control through Process Optimization	560
		2.	Control Selections for Incinerator Types	561
		3. ,	Air Pollution Control to Achieve Air Quality	
			Objectives	564
15.	App	roacl	nes to Incinerator Selection and Design	576
	A.	Cha	racterize the Waste	577
	В.	Lay	Out the System in Blocks	577
	C.		blish Performance Objectives	577
	D.		elop Heat and Material Balances	577
	E.	Dev	elop Incinerator Envelope	577
	F.	Eval	uate Incinerator Dynamics	578
	G.		elop the Design of Auxilliary Equipment	578
	H.	Dev	elop Incinerator Economics	578
		1.	Capital Investment	579
		2.	Operating Costs	579
		3.	Project Comparisons	579
	I.		d and Operate	582
Appe			Symbols: A Partial List	583
	endix		Conversion Factors	589
Appe			Periodic Table of the Elements	593
Appe	endix	D.	Combustion Properties of Coal, Oil, Natural Gas,	-0-
			and Other Materials	597
	endix		Pyrometric Cone Equivalent (PCE)	617
App	endix	F.	Spreadsheet Templates For Heat and Material	621
			Balance Calculations	
	A .		and Material Balance Calculator	622
	В.		of Combustion Calculator	627
		Refe	rences	629
Index	ζ.			651