.

Contents

Pı	Preface				
1	Intr	oduction	1		
	1.1	Background	1		
	1.2	The Deficiency of Current Engineering Practices	4		
	1.3	The Zero Waste Approach	5		
	1.4	Scope of the Book	6		
	1.5	Organization of the Book	6		
2	A D	elinearized History of Time and Its Impact			
	on S	Scientific Cognition	11		
	2.1	Introduction	11		
	2.2	The Importance of the Continuous			
		Long-term History	13		
	2.3	Delinearized History of Time and Knowledge	17		
		2.3.1 A Discussion	28		
	2.4	A Reflection on the Purposes of Sciences	32		
	2.5	bout the "New Science" of Time and Motion			
		2.5.1 Time-Conceptions, the Tangible-Intangible			
		Nexus, and the Social Role of Knowledge	34		
		2.5.2 More about Time: Newtonian			
		"Laws of Motion"—Versus Nature's	36		
		2.5.3 Science and the Problem of Linearized Time	42		
		2.5.4 Reproducibility and the Extinction of Time	44		
		2.5.5 The Long Term as an Infinite Summation			
		of "Short Terms" $T = \sum_{i=1}^{\infty} f_i(t)$	46		

vi Contents

3

	2.5.6	Erasing History in Order to	
		"Disappear" the Long-term and	
		Enshrine the Steady State	50
	2.5.7	, , , , , , , , , , , , , , , , , , ,	
		The Anti-Nature Essence of Linearized	
		Time	52
	2.5.8	Second Interim "Time"-Ly Conclusion:	
		Making Time Stand Still by Way of	
		Linearized Visualization of Space	53
2.6	What	is New Versus what is Permitted:	
	Scien	ce and the Establishment?	55
	2.6.1	"Laws" of Motion, Natural "Law" &	
		Questions of Mutability	55
	2.6.2	Scientific Disinformation	62
2.7	The N	Jature-Science Approach	66
	2.7.1	The Origin-pathway Approach of	
		Nature-Science Versus the Input-output	
		Approach of Engineering	66
	2.7.2	Reference Frame and Dimensionality	67
	2.7.3	Can "Lumped Parameters" Address	
		Phenomena of Only Partial Tangibility?	69
	2.7.4	Standardizing Criteria and the Intangible	
		Aspects of Tangible Phenomena	69
	2.7.5	Consequences of Nature-Science for	
		Classical Set Theory and Conventional	
		Notions of Mensuration	71
2.8	Concl	usions	73
Точ	ards N	Iodeling of Zero Waste Engineering	
		with Inherent Sustainability	77
3.1		luction	77
3.2	Devel	opment of a Sustainable Model	79
	3.2.1	•	80
	3.2.2	Violation of Characteristic Time	85
3.3	Obser	vation of Nature: Importance of Intangibles	86
3.4		ogy of Physical Phenomena	90
3.5	Intan	gible Cause to Tangible Consequence	91

	3.6	Removable Discontinuities: Phases and				
		Renewability of Materials	93			
	3.7	Rebalancing Mass and Energy	94			
	3.8	ENERGY: Existing Model	96			
		3.8.1 Supplements of Mass Balance Equation	96			
	3.9	Conclusions	99			
4	The	Formulation of a Comprehensive Mass and				
	Ene	rgy Balance Equation	101			
	4.1	Introduction	101			
	4.2	The Law of Conservation of Mass and Energy	106			
	4.3	Avalanche Theory	107			
	4.4	Aims of Modeling Natural Phenomena	112			
	4.5	Simultaneous Characterization of Matter				
		and Energy	114			
	4.6	A Discussion	117			
	4.7	Conclusions	121			
5	Col	ony Collapse Disorder (CCD): The Case				
		a Science of Intangibles and Zero				
	Was	te Engineering	123			
	5.1	Introduction	123			
	5.2	The Need for the Science of Intangibles	125			
	5.3	The Need for Multidimensional Study	133			
	5.4					
		of a Process	136			
	5.5					
		Intangibles	146			
	5.6	The Law of Conservation of Mass and				
		Energy	154			
	5.7	CCD In Relation to Science of Tangibles	160			
	5.8	Possible Causes of CCD	167			
		5.8.1 Genetically Engineered Crops	167			
		5.8.2 "Foreign Elements"	169			
		5.8.3 Electromagnetic Irradiation	171			
		5.8.4 Israeli Acute Paralysis Virus (IAPV)	173			
	5.9	Nature Science Approach and Discussion	173			

viii Contents

	5.10	A New Approach to Product Characterization	176
	5.11	A Discussion	179
	5.12	Conclusions	182
6	Zero	• Waste Lifestyle with Inherently Sustainable	
	Tech	nologies	185
	6.1	Introduction	185
	6.2	Energy from Kitchen Waste and Sewage	189
		6.2.1 Estimation of the Biogas and Ammonia	
		Production	191
	6.3	Utilization of Produced Waste in a	
		Desalination Plant	192
	6.4	Solar Aquatic Process to Purify	
		Desalinated/Waste Water	199
		6.4.1 Process Description	199
		6.4.2 Utilization of Biogas in Fuel Cell	203
	6.5	Direct Use of Solar Energy	205
		6.5.1 Space Heating	207
		6.5.2 Water Heating	208
		6.5.3 Refrigeration and Air Cooling	209
		6.5.4 Solar Stirling Engine	210
	6.6	Sustainability Analysis	211
	6.6	Conclusions	215
7	AN	ovel Sustainable Combined Heating/	
	Coo	ling/Refrigeration System	217
	7.1	Introduction	217
	7.2	Einstein Refrigeration Cycle	220
	7.3	Thermodynamic Model and the Energy	
		Requirement of the Cycle	221
	7.4	Solar Cooler and Heat Engine	226
	7.5	Actual Coefficient of Performance (COP) Calculation	226
		7.5.1 Vapor Compression Cycle	
		Refrigeration System	228
	7.6	Absorption Refrigeration System	230
	7.7	Calculation of Global Efficiency	232
		7.7.1 Heat Transfer Efficiency	233
		7.7.2 Turbine Efficiency	233

		7.7.3	Generator Efficiency	234
			Transmission Efficiency	234
		7.7.5	Compressor Efficiency	234
		7.7.6	Global Efficiency	235
		7.7.7	Fossil Fuel Combustion Efficiency	236
		7.7.8	Solar Energy	237
		7.7.9	Transmission Efficiency	237
	7.8	Solar I	Energy Utilization in the	
		Refrig	eration Cycle	239
	7.9	The N	ew System	240
	7.10	Pathw	vay Analysis	241
		7.10.1	Environmental Pollution Observation	242
		7.10.2	Fuel Collection Stage	243
		7.10.3	Combustion Stage	243
		7.10.4	Transmission Stage	244
		7.10.5	Environmentally Friendly System	245
		7.10.6	Global Economics of the Systems	245
		7.10.7	Quality of Energy	246
	7.11	Sustai	nability Analysis	246
	7.12	Conclu	usions	249
8	A Ze	ero Was	ste Design for Direct Usage of Solar Energy	251
		Introd	o o	251
	8.2	The Pr	rototype	255
			The Infrastructure	255
		8.2.2	Fluid Flow Process	259
		8.2.3	Solar Tracking Process	260
			0	
	8.3		s and Discussion of Parabolic Solar Technology	260
			s and Discussion of Parabolic Solar Technology usions	260 268
9	8.4	Result Conclu	usions	
9	8.4 Inve	Result Conclu estigation	usions on of Vegetable Oil as the Thermal	268
9	8.4 Inve Flui	Result Conclu estigation d in a P	usions on of Vegetable Oil as the Thermal Parabolic Solar Collector	268 269
9	8.4 Inve	Result Conch estigation d in a F Introd	usions on of Vegetable Oil as the Thermal Parabolic Solar Collector uction	268 269 269
9	8.4 Inve Flui 9.1	Result Conclu estigation d in a F Introd Experi	usions on of Vegetable Oil as the Thermal Parabolic Solar Collector uction imental Setup and Procedures	268 269
9	8.4 Inve Flui 9.1	Result Conch estigation d in a F Introd Experi 9.2.1	usions on of Vegetable Oil as the Thermal Parabolic Solar Collector uction imental Setup and Procedures Parabolic Solar Collector Assembly	268 269 273 273
9	8.4 Inve Flui 9.1	Result Conclu estigation d in a F Introd Experi	usions on of Vegetable Oil as the Thermal Parabolic Solar Collector uction imental Setup and Procedures	268 269 269 273

x Contents

	9.4	Results and Discussion	278
	9.5	Conclusions	281
10	The	Potential of Biogas in the Zero Waste	
	Moc	le in the Cold-Climate Environment	283
	10.1	Introduction	283
	10.2	Background	284
	10.3	Biogas Fermentation	285
	10.4	Factors Involved in Anaerobic Digestion	288
	10.5	Heath and Environmental Issue	291
	10.6	Digester in Cold Countries	293
	10.7	Experimental Setup and Procedures	294
		10.7.1 Experimental Apparatus	294
		10.7.2 Experimental Procedure	296
	10.8	Discussion	298
	10.9	Conclusions	303
11	The	New Synthesis: Application of All Natural	
	Mat	erials for Engineering Applications	305
	11.1	Introduction	305
	11.2	Metal Waste Removal with Natural Materials	306
		11.2.1 Natural Adsorbent	306
	11.3	Natural Materials as Bonding Agents	312
		11.3.1 Toxic and Hazardous Properties of	
		Adhesives	314
		11.3.2 Sustainable Technology for Adhesive	
		Preparation	318
		11.3.3 Materials and Methods	320
		11.3.4 Formulation of Adhesives	322
		11.3.5 Testing Media	323
		11.3.6 Testing Method and Standards	324
		11.3.7 Results and Discussion	325
	11.4	Selection of Adhesives	328
		11.4.2 Application of the Adhesives	331
	11.5	Conclusions	338
12	Sust	ainability of Nuclear Energy	341
	12.1	Summary	341
	12.2	Introduction	342

.

	12.3 Energy Demand in Emerging Economies				
		and Nuclear Power	344		
	12.4	Nuclear Energy Options	346		
	12.5	Status of Global Nuclear Energy Development	347		
	12.6 Nuclear Research Reactors				
	12.7	12.7 Global Estimated Uranium Resources			
	12.8 Nuclear Reactor Technologies				
	12.9 Sustainability of Nuclear Energy				
		12.9.1 Environmental Sustainability of			
		Nuclear Energy	355		
		12.9.2 Cooling Water Discharge	357		
		12.9.3 Nuclear Radiation Hazard	357		
		12.9.4 Nuclear Wastes	357		
		12.9.5 Social Sustainability of Nuclear Energy	360		
		12.9.6 Economic Sustainability of Nuclear Energy	363		
	12.10	Nuclear Energy and Global Warming	366		
	12.11	Global Efficiency of Nuclear Energy	368		
	12.12	Energy from Nuclear Fusion	369		
	12.13	Some Considerations	370		
	12.14	Conclusions	372		
13	High	Temperature Reactors for Hydrogen Production	375		
	13.1	Summary	375		
	13.2	Introduction	376		
	13.3	IS Process	378		
	13.4	Solar Energy for High Temperature Reactor	380		
	13.5	Sustainability of the Process	383		
	13.6	Conclusions	385		
14	Econo	omic Assessment of Zero Waste Engineering	387		
	14.1	Introduction .	387		
	14.2	Delinearized history of Modern Age	388		
	14.3	Insufficiency of Conventional Economics Models	398		
	14.4	The New Synthesis	401		
	14.5	The New Investment Model, Conforming to			
		the Information Age	403		
	14.6	Economics of Zero Waste Engineering Projects	409		
		14.6.1 Biogas Plant	411		
		14.6.2 Solar Parabolic Trough	414		

		14.6.3	A New Approach to Energy	
			Characterization	416
		14.6.4	Global Economics	419
		14.6.5	Environmental and Ecological Impact	420
		14.6.4	Quality of Energy	420
		14.6.5	Evaluation of Process	421
	14.7	Conclu	usions	423
15	Cond	lusions	and Recommendations	425
	15.1	Conclu	usions	425
Re	feren	ces		429
In	Index			

•

.