CONTENTS

Preface	xvii
Introduction to Green Chemistry	XXV
PART I AIR AND ENERGY	1
CHAPTER 1 Stratospheric Chemistry: The Ozone Layer	3
Introduction	3
 Dobson Units for Overhead Ozone • The Annual Ozone Hole Above Antarctica • Ozone Depletion in Temperate Areas • Regions of the Atmosphere • Environmental Concentration Units for Atmospheric Gases 	ve
The Physics and Chemistry of the Ozone Layer	9
Absorption of Light by Molecules • Filtering of Sunlight's UV Component by Atmospheric O_2 and O_3 • Biological Consequences of Ozone Depletion • Variation in Light's Energy with Wavelength • Creation of Ozone in the Stratosphere • Destruction of Stratospheric Ozone)-
The Steady State in Atmospheric Reactions	21
The Steady-State Approximation • Steady-State Analysis of the Chapman Mechanism	
Catalytic Processes of Ozone Destruction	27
Catalytic Destruction of Ozone by Nitric Oxide • Box 1-1: The Rates of Free-Radical Reactions • Destruction of Ozone Without Atomic Oxygen by Other Mechanisms • Atomic Chlorine and Bromine as X Catalysts	
The Ozone Hole and Other Sites of Ozone Depletion	36
The Activation of Catalytically Inactive Chlorine • Reactions That Create the Ozone Hole • The Size of the Antarctic Ozone Hole • Stratospheric Ozone Destruction over the Arctic Region	

• Increases in UV at Ground Level • Box 1-2: The Chemistry Behind Mid-Latitude Decreases in Stratospheric Ozone

The Chemicals That Cause Ozone Destruction

CFC Decomposition Increases AtmosphericChlorine • Box 1-3: Formulas and Codes tor Carbon Compounds (Including CFCs) • Other Chlorine-Containing, Ozone-Depleting Substances • Green Chemistry: The Replacement of CFC and Hydrocarbon Blowing Agents with Carbon Dioxide in Producing Foam Polystyrenc • CFC Replacements • Bromine-Containing,Ozone-Depleting Substances • International Agreements That Restrict ODSs • Green Chemistry: Harpin Technology — Eliciting Nature's Own Defenses Against Diseases

CHAPTER 2 Ground-Level Air Pollution— Outdoors and Indoors

Introduction

Concentration Units for Atmospheric Pollutants • The Chemical Fate of Trace Gases in Clean Air • Box 2-1: The Interconversion of Gas Concentrations

Urban Ozone: The Photochemical Smog Process

The Origin and Occurrence of Smog • Nitrogen Oxides Production During Fuel Combustion • Ground-Level Ozone in Smog • Governmental Goals for Reducing Ozone Concentrations • Photochemical Smog Around the World • Limiting VOC and NO Emissions to Reduce Ground-Level Ozone • Catalytic Converters • Control of Nitric Oxide Emissions from Power Plants • Future Reductions of Smog-Producing Emissions • Green Chemistry: Replacement of Organic Solvents with Supercritical and Liquid Carbon Dioxide; Development of Surfactants for This Compound

Acid Rain

Sulfur Dioxide and Hydrogen Sulfide Sources and Abatement • Clean Coal: Reducing Sulfur Dioxide Emissions from Power Plants

The Ecological Effects of Acid Rain and of Photochemical Smog

Neutralization of Acid Rain by Soil • Release of Aluminum into Soil and Water Bodies by Acid Rain • Effect on Trees and Crops of Air Pollution

93

99

48

66

66

Molecular Vibrations: Energy Absorption by Greenhouse Gases

The Major Greenhouse Gases

Carbon Dioxide: Absorption of Infrared Light • Carbon Dioxide: Past Concentration and Emission Trends • Carbon Dioxide: Atmospheric Lifetime and Fate of Its Emissions • Green Chemistry: Supercritical Carbon Dioxide in the Production of Computer Chips • Water Vapor: Its Infrared Absorption and Role in Feedback • The Atmospheric Window

Atmospheric Residence Time

Other Greenhouse Gases

Methane: Absorption and Sinks • Methane: Emission Sources • Box 4-1: Determining the Emissions of "Old Carbon" Sources of Methane • Methane: Concentration Trend and Possible Future Increases • Nitrous Oxide • CFCs and Their Replacements * Sulfur Hexafluoride * TroposphericOzone

The Climate-Modifying Effects of Aerosols 202

The Interaction of Light with Particles • Aerosols and Global Warming

Global Warming to Date

Earth's Energy Balance • Effective CO_2 Concentration • Allocation of Warming to Natural and Anthropogenic Factors • Global Warming: Chronology and Geography • Box 4-2: Cooling over China from Haze • Global Circulation Models • Other Signs of Global Warming

CHAPTER 5Climate Change in the Future:
Predictions, Consequences,
and Controls220

The Potential Consequences of Global Warming 220

Predictions for Climate Change by 2100 • Predictions About Sea Levels • Climate Predictions for Specific Regions • Predicted Effects on Human Health

Energy Reserves and Usage

Determinants of Growth in Energy Use • Energy Reserves: Coal • Energy Reserves: Petroleum and Natural Gas • Green

206

226

171 173

Chemistry: Polylactic Acid — Biodegradable Polymers from Renewable Resources: Reducing the Need for Petroleum and the Impact on the Environment • Growth in Energy Use and Its Causes

CO₂ Emission Scenarios and Agreements

Minimizing Future Emissions of Greenhouse Gases

CHAPTER 6Renewable Energy, Alternative
Fuels, and the Hydrogen
Economy252

Renewable Energy

Hydroelectric Power • Wind Energy • Biomass • Geothermal Energy • Wave and Tidal Power • Types of Direct Solar
Energy • Using Thermal Conversion to Produce Electricity
Limitations on the Conversion of Energy: The Second Law of Thermodynamics • Solar Cells • Conclusions About Renewable Fuels and Solar Energy

Alternative Fuels

Gasoline • Octane Enhancers • Natural Gas and Propane (LPG) • Oxygenated Fuels: Methanol • Oxygenated Fuels: Ethanol • Alcohols and Ethers as Vehicular Fuels • MTBE as a Fuel Additive • Biofuels

Hydrogen – Fuel of the Future?

Combusting Hydrogen • Generating Electricity by Powering Fuel Cells with Hydrogen • Obtaining Fuel-Cell Hydrogen from Liquid Fuels • Electric Cars Powered by Batteries • Other Uses for Fuel Cells • Storing Hydrogen • Producing Hydrogen • Conclusions Concerning Hydrogen and Other Alternative Fuels

236

241

253

267

Environmental Instrumental Analysis 1: Instrumental	
Determination of NO _X by Chemiluminescence	299
Environmental Instrumental Analysis 2: Instrumental	
Determination of Atmospheric Methane	302
PART II TOXIC ORGANIC	
CHEMICALS	305
CHAPTER 7 Pesticides	307
	207
Background	307
Types of Pesticides • Traditional Insecticides • Organochlorine Insecticides • Pesticides in Water	
DDT	212
	313
 DD1's Structure • Box 7-1: The History of DDT • DDE in Bod Fat • Bans on DDT and Other Persistent Pollutants 	y
The Accumulation of Organochlorines	
in Biological Systems	318
Bioconcentration • Biomagnification • Analogs of DDT	
Other Organochlorine Insecticides	323
Toxaphene • Hexachlorinated Cyclohexane • Chlorinated	
Cyclopentadiene Insecticides	
Principles of Toyicology	327
Dose Response Relationships . Rick Assessment	521
Dose–Response Relationships • Risk Assessment	
The Distribution of Environmental	
Pollutants	334
An Example of a Fugacity Calculation • Model World Parameters for Fugacity Calculations	
Organophosphateand Carbamate	
Insecticides	337
Organophosphate Insecticides • Carbamate Insecticides • Heal	th
Problems of Organophosphates and Cardamates	

Natural and O Pest Manag	Freen Insecticides, and Integrated gement	342
Pesticides fror ment Gre Certain Insect Termites	n Natural Sources • Integrated Pest Manage- en Chemistry: Insecticides That Target Only • Green Chemistry: A New Method for Controlling	
Herbicides		346
Atrazine and • • Phenoxy H	Other Triazines • Chloroacetamides • Glyphosate	
Summary		352
CHAPTER 8	Nonpesticide Toxic Organic Compounds of Environmental Concern	358
Dioving		350
Dioxin Produ Numbering Sy Dioxins in Fo Chlorophenol	ction in the Preparation of 2,4,5-T • Dioxin ystem • Chlorophenols as Pesticides • Detecting od and Water • Box 8-1: Deducing the Probable lic Origins of a Dioxin	
PCBs		365
The Structure PCBs • Cor Water, and Se Predicting the	of PCB Molecules • The Numbering Systems for mmercial Uses of PCBs • PCBs Cycling Among Air, diments • PCB Contamination by Furans • Rox 8-2 Furans That Will Form from a Given PCB	!:
Other Sources	of Dioxins and Furans	376
Pulp and Pape Benign Bleach Incineration a of Dioxin and	er Mills • Green Chemistry: H ₂ O ₂ , an Environmentall ning Agent for the Production of Paper • Fires and as Sources of Dioxins and Furans • Chlorine Content Furan Emissions	У
The Health Ef	ffects of Dioxins,	
Furans, and	l PCBs	381
Inadvertent P PCBs • Th • The TEQ S ins as Probabl	CB Poisonings • Effects of in Utero Exposure to e Toxicity Patterns of Dioxins, Furans, and PCBs Scale • Dioxins, Furans, and PCBs in Food • Dioxie le Human Carcinogens • Human Exposure to Dioxie	- S,

Furans, and PCBs

Polynuclear Aromatic Hydrocarbons (PAHs)	393
 The Molecular Structure of PAHs • PAHs as Air Pollutants • PAHs as Water Pollutants • Formation of PAHs During Incomplete Combustion • Carcinogenic Properties of PAHs • Box 8-3: More on the Mechanism of PAH Carcinogenesis • Environmental Levels of PAHs and Human Cancer 	
Other Toxic Organics of Environmental Concern	402
Insect Repellants • PBDEs: A New Persistent Pollutant • Perflue rinated Sulfonates)-
Environmental Estrogens	405
Mechanism of Action of Environmental Estrogens • The Chemica That Operate as Environmental Estrogens • Effects of Environment tal Estrogens on Wildlife • Effects of Environmental Estrogens on Humans	ls -
The Long-Range Transport of Atmospheric Pollutants	413
Environmental Instrumental Analysis 3: Electron Capture Detection of Pesticides	420
PART III WATER	423
CHAPTER 9 The Chemistry of Natural Waters	425
Oxidation – Reduction Chemistry in Natural Waters	426
Dissolved Oxygen • Oxygen Demand • Green Chemistry: Enzy- matic Preparation of Cotton Textiles • Decomposition of Organic Matter in Water • The pE Scale • pE-pH Diagrams • Sulfur Compounds in Natural Waters • Acid Mine Drainage • Nitroge Compounds in Natural Waters	en
Acid–Base Chemistry in Natural Waters: The Carbonate System	442
The CO ₂ -Carbonate System • Water in Equilibrium with Solid Calcium Carbonate • Water in Equilibrium with Both CaCO ₃ and Atmospheric CO ₂	

449

The Abundant Ions in Fresh Water
Fluoride Ion in
Water
Bottled Drinking Waters
Seawater
Alkalinity
Indices for Natural Waters
The Hardness Index for Natural
Waters
Aluminum in Natural Waters
Perchlorates

CHAPTER 10 The Pollution and Purification of Water

Water **Disinfection**

463

478

494

463

Aeration of Water • Removal of Calcium and Magnesium
Box 10-1: Activated Carbon • Disinfection to Reduce Illnesses
Filtering of Water • Removal of Colloidal Particles by Precipitation • Disinfection by Membrane Technology • Disinfection by Ultraviolet Irradiation • Disinfection by Chemical Methods:
Ozone and Chlorine Dioxide • Disinfection by Chlorination: History • Disinfection by Chlorination: Production of Hypochlorous
Acid • Disinfection by Chlorination: By-Products and Their Health
Effects • Box 10-2: The Mechanism of Chloroform Production in Drinking Water • Disinfection by Chlorination: Advantages over

Groundwater: Its Supply, Chemical Contamination, and Remediation

The Nature and Supply of Groundwater • The Contamination of Groundwater • Nitrate Contamination of Groundwater • Nitrates in Water • Health Hazards of Nitrates in Drinking Water • Nitrosamines in Food and Water • Groundwater Contamination by Organic Chemicals • The Ultimate Sink for Organic Contaminants in Groundwater • Decontamination of Groundwater: Pump-and-Treat • Decontamination of Groundwater: Bioremediation and Natural Attenuation • Decontamination of Groundwater: In Situ Remediation

The Chemical Contamination and Treatment of Wastewater and Sewage

Sewage Treatment • The Origin and Removal of Excess Phosphate • Box 10-3: Time Dependence of Concentrations in the Two-Step Oxidation of Ammonia • Green Chemistry: Sodium Iminodisuccinate — A Biodegradable Chelating Agent • Reducing the Salt Concentration in Water • The Biological Treatment of xiii

Wastewater and Sewage • Drugs in Wastewater from Sewage Treatment Plants • The Treatment of Cyanides in Wastewater * The Disposal of Sewage Sludge

Modern Wastewater and Air Purification Techniques 507

The Destruction of Volatile Organic Compounds • Advanced Oxidation Methods for Water Purification • Photocatalytic Processes • Other Advanced Oxidation Methods

CHAPTER II: Toxic Heavy Metals 516

Introduction

Speciation and the Toxicity of Heavy Metals • Bioaccumulation of Heavy Metals

Mercury

Mercury Vapor • Mercury Amalgams • Mercury and the Industrial Chlor-Alkali Process • The 2+ Ion of Mercury • Methylmercury Toxicity • Methylmercury Accumulation in the Environment and in the Human Body • Other Sources of Methylmercury • The Use of Mercury in Preservatives and as Medications • Safe Levels of Mercury in the Body

Lead

Elemental Lead as an Environmental Risk • Ionic 2+ Lead in Water and Food as an Environmental Hazard to Humans • Lead Salts as Glazes and Pigments • **Green Chemistry:** Replacement of Lead in ElectrodepositionCoatings • Dissolution of Otherwise Insoluble Lead Salts • Ionic 4+ Lead in Automobile Batteries • Tetravalent Organic Lead Compounds as Gasoline Additives • Environmental Lead from Leaded Gasoline • Lead's Effects on Human Reproduction and Intelligence

Cadmium

Environmental Sources of Cadmium • Human Intake of Cadmium

Protection Against Low Levels of Cadmium

Arsenic

Arsenic(III) Versus Arsenic(V) Toxicity • Anthropogenic Sources of Arsenic to the Environment • Box 11-1: Organotin Compounds
• Arsenic in Drinking Water • Drinking Water Standards for

530

542

545

516

Arsenic • Removal of Arsenic from Water • Steady State of Arsenic in Water • Arsenic in Organic and Other Molecular Forms

Chromium	554
Chromium Contamination of Water • The Wood Preservative CCA • Green Chemistry: Removing the Arsenic and Chromium from Pressure-Treated Wood	
Environmental Instrumental Analysis 4: Inductively Coupled	
Plasma Determination of Lead	562
Environmental Instrumental Analysis 5: Ion Chromatography of Environmentally Significant Anions	
PART IV SOME OTHER ENVIRONMENTAL CONCERNS	569
CHAPTER 12 Hazardous and Municipal Wastes, and the Contamination of Soils and Sediments	571
Domestic and Commercial Garbage: Its Disposal and Minimization	57 1
Burying Garbage in Landfills • Stages in the Decomposition of Garbage in a Landfill • Leachate from a Landfill • Incineration of Garbage • Green Chemistry: Polyaspartate—A Biodegradable Antiscalant and Dispersing Agent	
The Recycling of Household and Commercial Waste	581
The Recycling of Metals and Glass • The Recycling of Paper • The Recycling of Tires • The Recycling of Plastics • Ways of Recycling Plastics • Green Chemistry: Development of Recyclable Carpeting • Life Cycle Assessments	2
Soils and Sediments	59 1
Basic Soil Chemistry • The Acidity and Cation-Exchange Capacity	

Basic Soil Chemistry • The Acidity and Cation-Exchange Capacity of Soil • Soil Salinity • Sediments • The Binding of Heavy Metals to Soils and Sediments • Mine Tailings • The Remediation of Contaminated Soil • Box 12-1: The Superfund Program
• The Analysis and Remediation of Contaminated Sediments

 Bioremediation of Wastes and Soil • Bioremediation of Organochlorine Contamination • Phytoremediation of Soils and Sediments

Hazardous Wastes

The Nature of Hazardous Wastes
 The Management of Hazardous
 Wastes
 Toxic Substances
 Incineration of Toxic Waste
 Supercritical Fluids
 Nonoxidative Processes

CHAPTER 13 Radioactivity, Radon, and Nuclear Energy

Radioactivity and Radon Gas

The Nature of Radioactivity • The Health Effects of Ionizing Radiation • Quantifying the Amount of Radiation Energy Absorbed • Radioactive Nucleus Decay • Radon from the Uranium-238 Decay Sequence • Measuring the Rate of Disintegration and Health Threat from Environmental Radiation • Box 13-1: Steady-State Analysis of the Radioactive Decay Series • The Daughters of Radon • Measuring the Health Danger from Radon and Its Daughters • Depleted Uranium • Dirty Bombs

Nuclear Energy

Fission Reactors • Environmental Problems of Uranium Mining and Refining • The Future of Fission-Based Nuclear Power • The Catastrophe at Chemobyl • The Accident at Three Mile Island
Plutonium and the Problem of Nuclear Waste • Box 13-2: Radioactive Contamination by Plutonium Production • Fusion Reactors The Energy Released in Nuclear Processes

Appendix: Background Organic Chemistry	AP-1
Answers to Selected Odd-Numbered Problems	AN-1
Index	I-1

614

637

626