629.8 GUP

CONTENT

1.	 The Problem and the Method of Attack 1.1 The Plant 1.2 The control Problem and the Basic Approach 1.3 A Special Case of Interest : The Sampled-Data System 	1 2 5 10
	 1.4 The State Variable Approach – A Broadening of the Basic Asssumptions 1.5 The Method of Analysis 	11 13
2.	 Continuous – Time systems and their Response 2.1 Introduction 2.2 The Impulse-Response and Transfer Functions of a Linear Time-Invariant syst 	15 16 tem
	2.3 Transient Analysis By Use of the Transfer Functions Problems	16 31 45
3.	 Analysis of Continuous-Time Systems 3.1 Introduction 3.2 Stability 3.3 The Steady-State Error constants : K_p, K_v, and K_a 3.4 Frequency-Response Methods Problems 	51 52 53 82 92 112
4.	More on the Analysis of Continuous –Time Systems4.1Introduction4.2Root Locus Method4.3Mitrovic's MethodProblems	121 122 122 149 160
5.	 Discrete-Time Systems and Their Response 5.1 Introduction 5.2 Development of Basic Z-Transform and Concept of Transfer Functions in the z Domain 5.3 The Basic Process of Sampling and the use of Hold Circuits 5.4 Transient Analysis by use of Transfer Functions Problems 	163 164 2- 164 179 184 199
6.	Analysis of Discrete-time Systems6.1Introduction6.2Stability6.3Error Constants K _p , K _v , and K _a 6.4Frequency-Response Methods6.5Root Locus Method6.6Mitrovic's MethodProblems	203 204 204 217 222 228 238 238 243
7.	Analysis by state Variable Methods7.1Introduction7.2Continuous-Time Systems7.3Discrete-Time SystemsProblems	247 248 249 286 305
8.	Classical Compensation of continuous-Time Control Systems 8.1 Introduction to Cascade Compensation	309 310

	8.2	Realization of Common Compensators	321
	8.3	Root Locus Compensation	326
	8.4	Frequency-Response compensation	353
	8.5	Compensation by Mitrovic's Method	378
	8.6	Design of Compensators by s-Plane Synthesis	397
	8.7	A comparison of the Various Methods of compensation	414
	Proble	ms	418
9.	Classic	cal Compensation of Discrete-Time Control Systems	425
	9.1	Introduction	426
	9.2	Forward-Path Continuous Compensation	429
	9.3	Forward-Path Digital Compensation	438
	9.4	Design of Compensators by z-Plane Synthesis	446
	9.5	Compensation for Deadbeaty Performance	456
	9.6	Compensation by Mitrovic's Method	461
	Proble	ms	468
10.	State V	Variable Feedback Compensation	473
	10.1	Introduction	474
	10.2	State Variable Feedback Compensation of Continuous-Time Systems	474
	10.3	State-Variable Feedback Compensation of Discrete-Time Systems	505
	Proble	ms	518
11.	Integra	al-Square Error Compensation	523
	11.1	Introduction	524
	11.2	Basic Tools	526
	11.3	Parameter Optimization using Integral Square Error Criterion	538
	11.4	Compensator Design without Constraints	543
	11.5	Compensator Design subject to Constraints	553
	11.6	Some Comments on the Design of Compensators for Diecrete-Time Syste	ems Using
		Sum Square Error Criterion	564
	Problems		
Selected	Biblio	graphy	573
Index			579