CONTENT

	Page
OPENING SESSION	1
OPENING REMARKS	2
WELCOMING REMARKS	3
KEYNOTE ADDRESS – PROVIDING A SOLUTION	4
THE BUREAU OF MINES RESPONSIBILITIES IN MINERALS RELATED SOLID WASTE	
RESEARCH	7
SOLVING SOLID WASTE PROBLEMS THROUGH RESOURCE RECOVERY	11
THE NATIONAL CENTER FOR RESOURCE RECOVERY, INC.	15
MARKETS AND RECYCLING OF FERROUS SCRAP	21
ASH UTILIZATION – VIEWS ON A GROWTH INDUSTRY	27
RECYCLING CONTAINER GLASS – AN OVERVIEW	35
LEADERSHIP FOR RECYCLING: REORIENTING ECONOMIC ANDENVIRONMENTAL	33
PRIORITIES	45
SESSION NO I – UTILIZATION OF INDUSTRIAL WASTES	49
PROCESSING AND UTILIZATION OF INDUSTRIAL WASTES PROCESSING AND UTILIZATION OF STEELMAKING SLAGS	51
RECOVERY OF METAL VALUES FROM INDUSTRIAL SLAGS BY THE USE OF A TWO-	31
PHASE MOLTEN ELECTOLYTE SYSTEM	55
RECYCLING OF STEELMAKING DUSTS	63
UTILIZATION OF FOUNDRY WASTES	69
APPLICATIONS OF SILICATE WASTES FROM PAPER PROCESSING	75
DEVELOPMENT OF CARBON PRODUCTS FROM LIGNIN (PAPER MILL) WASTES	79
TOTAL UTILIZATION OF FLY ASH	85
THE EFFECT OF FLY ASH ON SOIL PHYSICAL CHARACTERISTICS	95
COAL MINE SPOIL AND REFUSE BANK RECLAMATION WITH POWERPLANT FLY ASI	
COPPER-ZINC REMOVAL FROM SCRAP IRON OXIDE BY PELLETIZATION-	1 100
CHLORIDIZATION	113
SESSION NO. II – UTILIZATION OF MINING AND MILLING WASTES	121
THE UTILIZATION OF INCINERATED ANTHRACITE MINE REFUSE	123
EVALUATION OF ABANDONED STRIP MINES AS SANITARY LANDFILLS	129
RECLAMATION OF MINERAL MILLING WASTES	139
A DATA BANK ON THE TRANSPORT OF MINERAL SLURRIES IN PIPELINES	143
EVALUATION OF SOLID MINERAL WASTES FOR REMOVAL OF SULFUR FROM FLUE	143
GASES	153
ENGINEERING PROPERTIES AND UTILIZATION EXAMPLES OF MINE TAILINGS	161
UTILIZATION OF FLORIDA PHOSPHATE SLIMES	171
UTILIZATION OF BY-PRODUCT FLUOSILICIC ACID	179
SESSION NO. III – UTILIZATION OF SCRAP METAL	185
OPPORTUNITIES FOR INCREASED RECYCLING OF METAL SOLID WASTE	187
AN ECONOMIC ANALYSIS OF THE JUNK AUTO WITH EMPHASIS ON PROCESSING	107
COSTS	195
CHICAGO'S A BANDONED CAR DISPOSAL CONTROL PROGRAM	203
ADVANCES IN TECHNOLOGY FOR RECYCLING OBSOLETE CARS	213
TECHNOLOGY AND ECONOMICS OF LARGE SHREDDING MACHINES	223
HOW RECYCLING MAKES THE USED CAN LIVE AGAIN	245
REMOVAL OF COPPER FROM MOLTEN FERROUS SCRAP	249
IDENTIFICATION AND SORTING OF NONFERROUS SCRAP METALS	255
NEW DEVELOPMENTS IN SMELTING SECONDARY COPPER	265
SCRAP UTILIZATION BY SECONDARY ALUMINUM SMELTERS	269
A SIGNIFICANT BREAKTHROUGH IN RECYCLING OF NICKEL ALLOY SCRAP	275

IMPROVED RECOVERY OF PRECIOUS METALS FROM SCRAP	279
SESSION NO. IV – UTILIZATION OF URBAN REFUSE	285
RECYCLING MATERIALS IN URBAN REFUSE	287
RECOVERY OF VALUES FROM SHREDDED URBAN FEFUSE	295
SOLID WASTE RECYCLING AT FRANKLIN, OHIO	305
GLASS RECOVERY FROM MUNICIPAL TRASH BY FROTH FLOTATION	311
CONCENTRATING GLASS CULLET RECOVERED FROM UNBURNED URBAN REFUSE	
AN DINCINERATOR RESIDUES	323
SOLID WASTE MANAGEMENT UTILIZING PLASTIC BAGS, SHREDDING AND	
RESOURCE RECOVERY	331
THE NORTHWEST INCINERATOR THE NEWEST STEP TOWARD WINNING THE URBAN	V
REFUSE RACE	337
RECOVERY OF ALUMINUM FROM SOLID WASTE	345
FEASIBILITY OF MAKING INSULATION MATERIAL BY FOAMING WASTE GLASS	353
EXTRUSION – A MEANS OF RECYCLING WASTE PLASTIC AND GLASS	359
EFFECT OF CONTAMINANTS IN RECYCLED GLASS UTILIZED FOR GLASPHALT	371
REFUSE GLASS AGGREGATE IN PORTLAND CEMENT CONCRETE	385
MINERAL WOOL FROM HIGH-GLASS FRACTIONS OF MUNICIPAL INCINERATOR	
RESIDUES	391
CHARACTERIZATION, BENEFICIATION AND UTILIZATION OF MUNICIPAL	
INCINERATOR FLYASH	397
WASTE GLASS AS AN INGREDIENT OF LIGHTWEIGHT AGGREGATE	411
PYROLYSIS OF WASTE MATERIALS FROM URBAN AND RURAL SOURCES	423
RESOURCE ASPECTS OF PVC IN URBAN WASTE	429
CONTINUOUS PROCESSING OF URBAN REFUSE TO OIL USING CARBON MONOXIDE	439