Table of Contents

1		oduction	
		Purpose	
		Scope	
	1.3	Who Will Benefit from this Guideline?	2
2		nagement	
		Management Overview	
		Why Do We Use Gas Detectors?	
		What Do We Want to Detect?	5
	2.4	What Actions Do We Expect to Undertake in the Event of a Release?	6
	2.5	How Much Should We Spend on Detection?	
		1	
3		ermining Where Gas Detection May or May Not be Beneficial	
		Assessing Where Gas Detection may be Beneficial	
		Situations Where Other Technologies May be More Beneficial	11
	3.3	Situations Where Gas Detection Is Recommended by Consensus	
		or Mandated By Law	
		Situations Where Toxic Gas Detection May be Beneficial	
		Situations Where Combustible Detection May be Beneficial	
	3.6	Example Applications of the Continuous Monitoring System	20
		3.6.1 Generalized Applications	20
		3.6.2 Personal Direct Reading Monitors in the Refining	
		Environment	22
		3.6.3 Perimeter Monitoring at an LPG Storage Facility	23
		3.6.4 Exhausted Enclosures; Specific Example in the	
		Semiconductor Industry, Specialty Gas Guideline	24
		3.6.5 Example: Hazardous Gas Monitoring: Alarm Set points	
		and Response Protocols	26
		3.6.6 Hazardous Gas Monitoring: System Features	27
		3.6.7 Hazardous Gas Monitoring: Sample Points	28
	3.7	References	29
	3.8	Glossary	29
	_	m 1 1	21
4.		sor Technology	
		Introduction	
	4.2	Description of Gases and Vapors	
		4.2.1 Gas	
		4.2.2 Vapor	
	4.3	Available Sensors and How they Work	
		4.3.1 Electrochemical Sensors	32

		4.3.2 Infrared (IR) Sensors	32
		4.3.3 Catalytic Bead Sensors	33
		4.3.4 Photoionization Detector (PID)	33
		4.3.5 Thermal Conductivity (TC) Gas Detectors	34
		4.3.6 Colorimetry (i.e., Honeywell Zellwegger Chemcassette®)	34
		4.3.7 Radon Gas	34
		4.3.8 Laser Gas Analyzer Open Path Detection	34
	4.4	Factors to Consider when Choosing a Sensor	35
		4.4.1 Target Gas/Vapor	
		4.4.2 Interfering Gases/Vapors	
		4.4.3 Expected Gas/Vapor Concentration Range	35
		4.4.4 Fixed vs. Portable Detectors	
		4.4.5 Personal Detection Equipment	
		4.4.6 Point or Open Path Detection	37
	4.5	Sensor Performance Variables	
		4.5.1 Response Speed	
		4.5.2 Measurement Range/Operating Range	39
		4.5.3 Sensitivity	
		4.5.4 Oxygen Requirements	
		4.5.5 Interference	39
		References	
	4.7	Glossary	44
		4	
5		proaches to Detector Placement and Configuration	
		General Guidance for Detector Placement and Configuration	
		General Guidance for Toxic Gas Detection	
		General Guidance for Flammable Detection	
		Detector Placement for Source Monitoring	
	5.5	Detector Placement for Volumetric Monitoring	
		5.5.1 Applying the Volumetric Approach in Enclosed Buildings .	56
		5.5.2 Applying the Volumetric Approach in Outdoor Locations	
		and Semi-Enclosed Volumes	
		5.5.2.1 Semi-Enclosed Volumes	
		5.5.2.2 Open Volumes	59
		5.5.2.3 Applying the Volumetric Approach to Liquid	
		Phase and Heavier-Than-Air Releases	
	5.6	Detector Placement for Enclosure Monitoring	
		5.6.1 Monitoring Enclosures for Toxics	
		5.6.2 Monitoring Enclosures for Flammables	
		5.6.2.1 Enclosures Containing Release Sources	
	_	5.6.3 Enclosures Exposed to External Release Sources Only	66
	5.7	Detector Placement for Path of Travel and Target Receptor	
		Monitoring	68

	5.8 Detector Placement for Perimeter Monitoring	69			
	5.9 Detector Set Points and Monitoring	71			
6	Overall System Management — Commissioning, Testing, and				
	Maintenance	73			
	6.1 Summary	73			
	6.2 Training	73			
	6.3 Documentation	74			
	6.4 Maintenance	74			
	6.5 Establish a Good Relationship with the Local Authority-Having				
	Jurisdiction (AHJ)	75			
	6.6 Change Management				