Contents

Series Preface XI
Preface of Volume 1 XV
List of Contributors XXI
Recommended Notation XXV
EFCE Working Party on Drying: Address List XXXI

1	Comprehensive Drying Models based on Volume Averaging: Background, Application and Perspective 1
	P. Perré, R. Rémond, I.W. Turner
1.1	Microscopic Foundations of the Macroscopic Formulation 1
1.2	The Macroscopic Set of Equations 6
1.3	Physical Phenomena Embedded in the Equations 7
1.3.1	Low-temperature Convective Drying 7
1.3.1.1	The Constant Drying Rate Period 8
1.3.1.2	The Decreasing Drying Rate Period 9
1.3.2	Drying at High Temperature: The Effect of Internal Pressure
	on Mass Transfer 10
1.4	Computational Strategy to Solve the Comprehensive Set of
	Macroscopic Equations 11
1.4.1	The Control-volume Finite-element (CV-FE) Discretization
	Procedure 13
1.4.2	Evaluation of the Tensor Terms at the CV Face 14
1.4.3	Solution of the Nonlinear System 15
1.4.3.1	Outer (Nonlinear) Iterations 16
1.4.3.2	Construction of the Jacobian 17
1.4.3.3	Inner (Linearized System) Iterations 17
1.5	Possibilities Offered by this Modeling Approach:
	Convective Drying 19
1.5.1	High-temperature Convective Drying of Light Concrete 19
1.5.1.1	Test 1: Superheated Steam 20
1.5.1.2	Tests 2 and 3: Moist Air, Soft and Severe Conditions 22

	_
/1	Contents

1.5.2	Typical Drying Behavior of Softwood: Difference Between Sapwood and Heartwood 25
1.6	Possibilities Offered by this Modeling Approach: Less-common Drying Configurations 29
1 (1	, = •
1.6.1	Drying with Volumetric Heating 29
1.6.2	The Concept of Identity Drying Card (IDC) 32
1.6.3	Drying of Highly Deformable Materials 34
1.7	Homogenization as a Way to Supply the Code with Physical Parameters 37
1.8	The Multiscale Approach 42
1.8.1	Limitations of the Macroscopic Formulation 42
1.8.2	The Stack Model: An Example of Multiscale Model 43
1.8.2.1	
	Local Scale 46
	Coupling Approach 46
1.8.2.4	•
1.8.2.5	Accounting for Wood Variability 49
1.8.2.6	Accounting for Drying Quality 50
	Conclusion 52
2	Pore-network Models: A Powerful Tool to Study Drying
	at the Pore Level and Understand the Influence of Structure
	on Drying Kinetics 57
	T. Metzger, E. Tsotsas, M. Prat
2.1	Introduction 57
2.2	Isothermal Drying Model 58
2.2.1	Model Description 58
2.2.1.1	Network Geometry and Corresponding Data
	Structures 59
2.2.1.2	Boundary-layer Modeling 60
2.2.1.3	Saturation of Pores and Throats 62
2.2,1.4	Vapor Transfer 63
2.2.1.5	Capillary Pumping of Liquid 64
2.2.1.6	Cluster Labeling 65
2.2.1.7	Drying Algorithm 66
2.2.2	Simulation Results and Experimental Validation 68
2.2.3	Gravity and Liquid Viscosity – Stabilized Drying Front 71
2.2.3.1	Modeling Gravity 71
2.2.3.2	Modeling Liquid Viscosity 72
2.2.3.3	Dimensionless Numbers and Length Scales 75
2.2.3.4	Phase Distributions and Drying Curves 77
2.2.4	Film Flow 79
2.2.5	,,
2.2.6	First Drying Period 85
2.3	Model Extensions 87

2.3.1	Heat Transfer 87
2.3.2	Multicomponent Liquid 92
2.4	Influence of Pore Structure 92
2.4.1	Pore Shapes 92
2.4.2	Coordination Number 94
2.4.3	Bimodal Pore-size Distributions 95
2.4.4	Outlook 100
2.5	Towards an Assessment of Continuous Models 100
3	Continuous Thermomechanical Models using
	Volume-averaging Theory 103
	F. Couture, P. Bernada, M. A. Roques
3.1	Introduction 103
3.2	Modeling 105
3.2.1	Nature of Product Class 106
3.2.2	Averaged Internal Equations 107
3.2.2.1	State Equations and Volume Conservation 108
3.2.2.2	Mass-conservation Equations 109
3.2.2.3	Momentum-conservation Equations 109
3.2.2.4	Energy-conservation Equations 112
3.2.3	Boundary Conditions for Convective Drying 113
3.3	Simulation 114
3.3.1	Numerical Resolution Technique 114
3.3.2	Comparison between Real Viscoelatic and Assumed
	Elastic Behavior 115
3.4	Liquid Pressure as Driving Force 120
3.5	Conclusions 122
4	Continuous Thermohydromechanical Model using the
	Theory of Mixtures 125
	S. J. Kowalski
4.1	Preliminaries 125
4.2	Global Balance Equations 126
4.3	Constitutive Equations in the Skeletal Frame of Reference 130
4.4	Rate Equations for Heat and Mass Transfer 132
4.5	Differential Equations for Heat and Mass Transfer 134
4.5.1	Differential Equation for Heat Transfer 134
4.5.2	Determination of the Microwave Heat Source \Re 135
4.5.3	Differential Equation for Mass Transfer 139
4.6	Thermomechanical Equations for a Drying Body 141
4.6.1	Physical Relations 141
4.6.2	Differential Equations for Body Deformation 143
4.7	Drying of a Cylindrical Sample made of Kaolin 144
4.7.1	Convective Drying of a Kaolin Cylinder 144
4.7.2	Microwave Drving of a Kaolin Cylinder 150

4.8	Final Remarks 152
	Acknowledgments 152
	Additional Notation used in Chapter 4 153
-	CED to D. to-Tork toleray Comp. Donor Characters 155
5	CFD in Drying Technology – Spray-Dryer Simulation 155
	S. Blei, M. Sommerfeld
5.1	Introduction 155
5.1.1	Introduction to CFD 155
5.1.2	Introduction to Multiphase Flow Modeling 158
5.1.3	State-of-the-art in Spray-dryer Computations 160
5.2	The Euler-Lagrange Approach: an Extended Model for
	Spray-dryer Calculations 162
5.2.1	Fluid-phase Modeling 163
5.2.2	Fundamentals of Lagrangian Particle Tracking 166
5.2.2.1	Drag Force 167
5.2.2.2	Virtual Mass Force 168
5.2.2.3	Basset History Force 168
5.2.2.4	Forces Caused by Pressure Gradients in the Fluid 168
5.2.2.5	Magnus Force 168
5.2.2.6	Saffman Force 169
5.2.2.7	Gravitational Force 169
5.2.3	Particle Tracking 169
5.2.4	Particle Turbulent Dispersion Modeling 171
5.2.5	Two-way Coupling Procedure 173
5.3	Droplet-drying Models 173
5.3.1	Introduction 173
5.3.2	Review of Droplet-drying Models 175
5.3.3	Exemplary Drying Model for Whey-based Milk Products 176
5.3.4	Numerical Implementation 178
5.4	Collisions of Particles 181
5.4.1	Introduction 181
5.4.2	Extended Stochastic Collision Model 182
5.4.3	Modeling of Particle Collisions: Coalescence and Agglomeration 187
5.4.3.1	Surface-tension Dominated Droplets (STD Droplets) 187
5.4.3.2	Droplets Dominated by Viscous Forces (VD Droplets) 188
5.4.3.3	Dry Particles 189
5.4.4	Collisions of Surface-tension Dominated Droplets (STD-STD) 190
5.4.5	Collisions of Viscous Droplets 190
5.4.6	Collisions of Dry Particles 191
5.5	Example of a Spray-dryer Calculation 192
5.5.1	Geometry and Spatial Discretization of the Spray Dryer 192
5.5.2	Results for the Fluid Phase 193
5.5.3	Results of the Dispersed Phase 195
5.6	Prediction of Product Properties 200
561	Particle size Distribution 200

5.6.2	Heat Damage 201
5.6.3	Particle Morphology 201
5.7	Summary 203
	Additional Notation used in Chapter 5 204
6	Numerical Methods on Population Balances 209
	J. Kumar, M. Peglow, G. Warnecke, S. Heinrich, E. Tsotsas, L. Mörl,
	M. Hounslow, G. Reynolds
6.1	Introduction 209
6.2	Pure Breakage 214
6.2.1	Population-balance Equation 214
6.2.2	
6.2.2.1	The Cell-average Technique 216
6.2.2.2	The Finite-volume Scheme 222
6.3	Pure Aggregation 225
6.3.1	Population-balance Equation 225
6.3.2	Numerical Methods 226
6.3.2.1	The Fixed-pivot Technique 226
6.3.2.2	v 1
6.3.2.3	The Finite-volume Scheme 231
6.4	Pure Growth 233
6.4.1	Population balance Equation 233
6.4.2	Numerical Methods 233
6.5	Combined Aggregation and Breakage 239
6.6	Combined Aggregation and Nucleation 242
6.7	Combined Growth and Aggregation 244
6.8	Combined Growth and Nucleation 245
6.9	Multidimensional Population Balances 247
6.9.1	Reduced Model 247
6.9.2	Complete Model 250
	Additional Notation used in Chapter 6 256
7	Process-systems Simulation Tools 261
	I. C. Kemp
7.1	Introduction 261
7.1.1	Summary of Contents 261
7.1.2	The Solids Processing Challenge 262
7.1.3	Types of Software for Dryers 263
7.2	Numerical Calculation Procedures 263
7.2.1	Categorization of Dryer Models 264
7.2.2	Equipment and Material Model 265
7.2.3	Parametric Models 266
7.3	Heat and Mass Balances 268
7.4	Scoping Design Methods 269
7.4.1	Continuous Convective Dryers 269

X	Contents
---	----------

7.4.2	Continuous-contact Dryers 270
7.4.3	Batch Dryers 270
7.4.4	Simple Allowance for Falling-rate Drying 271
7.5	Scaling Methods 272
7.5.1	Basic Scale-up Principles 273
7.5.2	Integral Model 274
7.5.3	Application to Fluidized-bed Dryers 274
7.6	Detailed Design Models 276
7.6.1	Incremental Model 277
7.6.2	Application to Pneumatic Conveying, Rotary and Band Dryers 278
7.6.2.1	Pneumatic Conveying Dryers 278
7.6.2.2	Cascading Rotary Dryers 281
7.6.3	Advanced Methods - Computational Fluid Dynamics (CFD) 281
7.7	Ancillary Calculations 283
7.7.1	Processing Experimental Data 283
7.7.2	Humidity and Psychrometry 284
7.7.2.1	British Standard BS1339 for Humidity Calculations 284
7.7.2.2	Plotting Psychrometric Charts 286
7.7.3	Physical-properties Databanks 286
7.8	Process Simulators 287
7.8.1	Current Simulators and their Limitations 287
7.8.2	Potential Developments 288
7.9	Expert Systems and Decision-making Tools 289
7.9.1	Dryer Selection 289
7.9.1.1	Tree-search Algorithms 289
7.9.1.2	Matrix-type Rule-based Algorithms 289
7.9.1.3	Qualitative Information 292
7.9.1.4	Alternative Tree-search Approach 292
7.9.2	Troubleshooting and Problem Solving in Dryers 294
7.10	Knowledge Bases and Qualitative Information 295
7.10.1	Internet Websites 295
7.10.2	The Process Manual Knowledge Base 295
7.11	Commercialization of Drying Software 296
7.11.1	Barriers to Drying-software Development 297
	Complexity of the Calculations 297
	Difficulties in Modeling Solids 297
	Limited Market and Lack of Replicability 298
7.11.1.4	Changes in Operating-system Software 298
7.11.2	The Future: Possible Ways Forward 300
7.12	Conclusions 301
7.12.1	Range of Application of Software in Drying 301
7.12.2	Overall Conclusion 302
	Additional Notation used in Chapter 7 303

2

Contents

Series Preface XIII

Preface of Volume 2 XVII

List of Contributors XXIII

Recommended Notation XXVII

EFCE Working Party on Drying: Address List XXXIII

1	Measurement of Average Moisture Content and Drying Kinetics
	for Single Particles, Droplets and Dryers 1
	Mirko Peglow, Thomas Metzger, Geoffrey Lee, Heiko Schiffter,
	Robert Hampel, Stefan Heinrich, and Evangelos Tsotsas
1.1	Introduction and Overview 1
1.2	Magnetic Suspension Balance 2
1.2.1	Determination of Single Particle Drying Kinetics – General Remarks
1.2.2	Configuration and Periphery of Magnetic Suspension Balance 4
1.2.3	Discussion of Selected Experimental Results 6
1.3	Infrared Spectroscopy and Dew Point Measurement 10
1.3.1	Measurement for Particle Systems – General Remarks 10
1.3.2	Experimental Set-Up 12
1.3.3	Principle of Measurement with the Infrared Spectrometer 13
1.3.4	Dew Point Mirror for Calibration of IR Spectrometer 14
1.3.5	Testing the Calibration 17
1.3.6	A Case Study. Determination of Single Particle Drying Kinetics of
	Powdery Material 20
1.4	Coulometry and Nuclear Magnetic Resonance 24
1.4.1	Particle Moisture as a Distributed Property 24
1.4.2	Modeling the Distribution of Solids Moisture at the Outlet
	of a Continuous Fluidized Bed Dryer 25
1.4.3	Challenges in Validating the Model 27
1.4.4	Coulometry 28
145	Nuclear Magnetic Resonance 33

Combination of Both Methods 37

1.4.6

VI	Contents	
	1.4.7	Experimental Moisture Distributions and Assessment of Model 32
	1.5	Acoustic Levitation 41
	1.5.1	Introductory Remarks 41
	1. 5.2	Some Useful Definitions 42
	1.5.3	Forces in a Standing Acoustic Wave 43
	1.5.4	Interactions of a Droplet with the Sound Pressure Field 47
	1.5.4.1	Deformation of Droplet Shape 48
	1.5.4.2	Primary and Secondary Acoustic Streaming 48
	1.5.4.3	Effects of Changing Droplet Size 53
	1.5.5	Single Droplet Drying in an Acoustic Levitator 55
	1.5.5.1	Drying Rate of a Spherical Solvent Droplet 55
	1.5.5.2	Drying Rate of an Acoustically Levitated Solvent Droplet 58
	1.5.5.3	Drying Rate of Droplets of Solutions or Suspensions 58
	1.5.6	A Case Study. Single Droplet Drying of Water and an Aqueous
		Carbohydrate Solution 59
	1.5.6.1	A Typical Acoustic Levitator 60
	1.5.6.2	Evaporation Rates of Acoustically-Levitated Pure Water Droplets 6.
	1.5.6.3	Evaporation Rates and Particle Formation with Aqueous
		Mannitol Solution Droplets 63
	1.6	Concluding Remarks 66
		References 69
	2	Near-Infrared Spectral Imaging for Visualization of Moisture
		Distribution in Foods 73
		Mizuki Tsuta
	2.1	Introduction 73
	2.2	Principles of Near-Infrared Spectral Imaging 74
	2.2. 1	Near-Infrared Spectroscopy 74
	2.2.2	Lambert-Beer Law 74
	2.2.3	Hyperspectrum 76
	2.2.4	Classification by Spectral Information Acquisition Technique 77
	2.2.5	Classification by Spatial Information Acquisition Technique 78
	2.3	Image Processing 79
	2.3.1	Extraction of Spectral Images from a Hyperspectrum 79
	2.3.2	Noise and Shading Correction 79
	2.3.3	Conversion into Absorbance Image 80
	2.3.4	Acquisition and Pretreatment of Spectral Data 81
	2.3.5	Analysis of Absorbance Spectra 82
	2.3.6	Visualization of Constituent Distribution 82
	2.4	Applications of Near-Infrared Spectral Imaging for Visualization of Moisture Distribution 83
	2.4.1	Specification of the Absorption Bands of Water and Ice 83
	2.4.1.1	Imaging Apparatus 83
	4.T.I.I	imaging Apparatus os
	2.4.1.2 2.4.1.3	Acquisition of Hyperspectra of Water and Ice 84 Spectral Analysis 84

2.4.2 2.4.2.1	Visualization of Moisture Distribution inside Soybean Seeds 85 Sample 85
	•
2.4.2.2	Acquisition of Hyperspectra 86
2.4.2.3	Spectral Analysis 86
2.4.2.4	Visualization of Moisture Distribution 87
2.5	Future Outlook 88
	References 89
3	Magnetic Resonance Imaging for Determination of Moisture Profiles
	and Drying Curves 91
	Stig Stenström, Catherine Bonazzi, and Loïc Foucat
3.1	Introduction 91
3.2	Principles of MRI for Determination of Moisture Profiles 93
3.2.1	General Considerations 93
3.2.2	Basic NMR 94
3.2.2.1	Nuclear Magnetic Moment and Larmor Relation 94
3.2.2.2	Net Magnetization and Radio Frequency Excitation 94
3.2.2.3	Relaxation and NMR Signal 95
3.2.2.4	Factors Influencing Relaxation Times 97
3.2.3	Imaging Principles 97
3.2.3.1	Projection of an Object (1D Imaging) 98
3.2.3.2	Two-Dimensional Imaging 98
3.2.3.3	Slice Selection 99
3.2.3.4	Three-Dimensional Imaging 100
3.2.4	Imaging Sequences 101
3.2.4.1	The Spin–Echo (SE) Sequence 101
3.2.4.2	The Gradient-Echo (GE) Sequence 102
3.3	MRI Applications to Drying of Paper, Pulp and Wood Samples 102
3.3.1	Some General Data about the Materials 102
3.3.2	Overview of Previous Results 104
3.3.2.1	Pulp, Paper and Cellulose Samples 104
3.3.2.2	Wood 106
3.3.3	Determination of Moisture Gradients in Cardboard Samples 108
3.3.3.1	Experimental Conditions 108
3.3.3.2	Drying Experiments and MRI Parameters 109
3.3.3.3	Calibration Procedure 111
3.3.4	Results for Drying Profiles 114
3.3.3.5	Diffusion Measurements 119
3.4	MRI Applications to Drying of Agricultural and Food Samples 125
3.4.1	MRI and Transport Phenomena in Agricultural and Food Products 125
3.4.2	NMR for Characterization of Biological and Food Products 126
3.4.3	MRI for Measurement of Transient Moisture Profiles in Food
	and Biological Samples 128
3.4.3.1	General Data 128
3.4.3.2	Measurement of Moisture Profiles in a Gel during Drying 130

VIII	Contents	
	3.4.4	Non-Intrusive Measurement by MRI of Moisture Profiles in Paddy
		Rice Kernels during Drying 132
	3.4.4.1	Experimental Set-Up 132
	3.4.4.2	NMR Preliminary Experiments 132
	3.4.4.3	NMR Imaging Experiments 134
	3.4.4.4	Conversion of the MRI Signal to Water Content 135
	3.4.4.5	Imaging Results and Moisture Profiles 135
	3.5	Conclusion 137
		References 139
	4	Use of X-Ray Tomography for Drying-Related Applications 143
	-	Angélique Léonard, Michel Crine, and Frantisek Stepanek
	4.1	Fundamentals and Principles 143
	4.1.1	Introduction 143
	4.1.2	Physical Principles 144
	4.1.3	Reconstruction 148
	4.2	Instrumentation 153
	4.2.1	Geometry of CT Systems 153
	4.2.2	X-Ray Macrotomography (or Industrial Tomography) 155
	4.2.3	X-Ray Microtomography 156
	4.2.4	Synchrotron X-Ray Microtomography 157
	4.3	Image Processing 157
	4.3.1	Algorithms for 3D Image Filtering and Segmentation 157
	4.3.2	Calculation of Morphological Characteristics 163
	4.3.2.1	Phase Volume Fraction 164
	4.3.2.2	Cluster Volume Distribution 164
	4.3.2.3	Percolation 165
	4.3.2.4	Interfacial Area 166
	4.3.2.5	Interface Curvature 166
	4.4	Applications 167
	4.4.1	Convective Drying of Sludge 167
	4.4.1.1	Sludge Individual Extrudates 167
	4.4.1.2	Sludge Packed Bed 170
	4.4.2	Drying Optimization of Resorcinol-Formaldehyde Xerogels 173
	4.4.3	Contact Drying of a Packed Bed 176
	4.4.3.1	Experimental Set-Up 176 Spatia Temporal Evolution of the Daving Front 177
	4.4.3.2 4.5	Spatio-Temporal Evolution of the Drying Front 177 Future Outlook 180
	4.3	References 182
	5	Measuring Techniques for Particle Formulation Processes 187
	-	Stefan Heinrich, Niels G. Deen, Mirko Peglow, Mike Adams,
		Johannes A.M. Kuipers, Evangelos Tsotsas, and Jonathan P.K. Seville
	5.1	Introduction 187
	5.2	Measurement of Particle Size 188

5.2.1	In-Line Particle Size Measurement 188
5.2.1.1	Measuring Principle 188
5.2.1.2	Instrumentation 189
5.2.1.3	Applications 190
5.2.2	Off-Line Particle Size Measurement 194
5.2.2.1	Measuring Principle 194
5.2.2.2	Measurement Results: Size and Shape 196
5.3	Measurement of Particle Concentrations, Velocities, and
	Hydrodynamic Stability 201
5.3.1	Introduction 201
5.3.2	Particle Detection 202
5.3.3	Particle Image Velocimetry 208
5.3.4	Spectral Analysis of Pressure Drop Fluctuations 218
5.3.5	Positron Emission Particle Tracking 223
5.3.5.1	Particle Circulation Time 224
5.3.6	Fiber Optical Probe Measurement Technique 228
5.3.6.1	Calibration 231
5.3.6.2	Experimental Results 232
5.4	Measurement of Mechanical Stability of Particles during Fluidized
	Bed Processing 236
5.4.1	Introduction 236
5.4.2	Measurement of Attrition Dust with an Isokinetic
	Sensor 237
5.4.2.1	Theory 237
5.4.2.2	Experimental Results 240
5.4.3	Measurement of Attrition Dust and Overspray with an On-Line
	Particle Counter 243
5.4.3.1	Lorentz-Mie Theory as Measuring Principle 243
5.4.3.2	Measurement in High Concentrations with Small Optical
	Measuring Volume 244
5.4.3.3	Calibration and Evaluation 246
5.4.3.4	Experimental Results 249
5.5	Characterization of the Mechanical Properties of Partially
	and Fully Saturated Wet Granular Media 251
5.5.1	Introduction 251
5.5.2	Interparticle Forces 252
5.5.2.1	Mechanical Interactions 252
5.5.2.2	Adhesive Interactions 254
5.5.2.3	Cohesive Interactions 256
5.5.2.4	Frictional and Lubrication Interactions 259
5.5.3	Mechanical Properties of Wet Granular Media 261
5.5.3.1	Elastoplastic Measurements 262
5.5.3.2	Failure Properties 266
5.6	Conclusions 269
	References 272

x Con

6	Determination of Physical Properties of Fine Particles, Nanoparticles
	and Particle Beds 279
	Werner Hintz, Sergiy Antonyuk, Wolfgang Schubert, Bernd Ebenau,
	Aimo Haack, and Jürgen Tomas
6.1	Introduction to Common Particle Properties 279
6.2	Analysis of Particle Size Distribution 280
6.2.1	Image Analysis by Optical and Scanning Electron Microscopy 280
6.2.1.1	Optical Microscopy 281
6.2.1.2	Electron Microscopy 281
6.2.1.3	Image Analysis 282
6.2.2	Laser Light Scattering and Diffraction for Dilute Particle
	Dispersions 283
6.2.3	Ultrasonic Methods for Dense Particle Dispersions 291
6.2.3.1	Acoustic Attenuation Spectroscopy 291
6.2.3.2	Electrokinetic Sonic Amplitude Spectroscopy 292
6.3	Measurement of the Physical Properties of Particles 293
6.3.1	Solid Density Analysis by He-Pycnometry 293
6.3.1.1	Introduction 293
6.3.1.2	Volume Determination Using Gas Pycnometry 294
6.3.2	Specific Surface Area by Gas Adsorption Method 296
6.3.2.1	Physical Principles 296
6.3.2.2	Surface Area Determination using the BET-Model 298
6.3.3	Pore Size Distribution by Gas Adsorption Method 300
6.3.3.1	Introduction 300
6.3.3.2	Assessment of Microporosity 301
6.3.3.3	Assessment of Mesoporosity 302
6.3.3.4	Simplified Assessment of Pore Volume 304
6.3.3.5	Measurement Set-Up and Test Method 305
6.3.4	Measurement of Particle Adhesion 307
6.3.4.1	Particle Adhesion Effects 307
6.3.4.2	Comparison between Different Adhesion Forces 308
6.3.4.3	Survey of Adhesion Force Test Methods 309
6.3.4.4	Particle Interaction Apparatus According to Butt 310
6.3.5	Measurement of Particle Restitution Coefficient 312
6.3.6	Particle Abrasion and Breakage Tests 318
6.3.6.1	Survey of Test Methods and Principles 318
6.3.6.2	Compression Test 321
6.3.6.3	Impact Test 325
6.4	Testing of Particle Bed Properties 328
6.4.1	Bulk Density and Tapping Density 328
6.4.2	Angle of Repose of a Moving Particle Bed 329
6.4.3	Flow Behavior of Cohesive and Compressible Bulk Solids 329
6.4.4	Flow Criteria of Preconsolidated Cohesive Powders on a
	Physical Basis 332
6.4.5	Translational Shear Cell according to Jenike 335

6.4.5.1	The Shear Testing Technique SSTT according to ICE 337	
6.4.6	Ring Shear Tester according to Schulze for Dry Powder 339	
6.4.7	Press Shear Cell according to Reichmann for Wet Filter Cake	340
6.4.8	Survey of Selected Direct and Indirect Shear Testers 344	
6.4.8.1	The Biaxial Shear Tester according to Schwedes 344	
6.4.8.2	The Uniaxial Tester according to Enstad 344	
6.4.8.3	Couette Device by Tardos 346	
6.4.8.4	Powder Flow Analyzer ShearScan TS12 by AnaTec 346	
6.4.8.5	Survey of Different Shear Testers 348	
6.5	Measurement of Particle Bed Movement in Rotary Drums by	
	High-Speed Camera 348	
6.6	Conclusions 353	
	References 356	

Index 363

Contents

1

1.1 1.2 1.3 1.4 1.5 1.6

2

2.1 2.2

2.3

2.4

2.4.1 2.4.2 2.5

2.6

References

46

Series Preface XIII
Preface of Volume 3 XVII
List of Contributors XXI
Recommended Notation XXV
EFCE Working Party on Drying: Address List XXXI
Quality Changes in Food Materials as Influenced
by Drying Processes 1
Catherine Bonazzi and Elisabeth Dumoulin
Introduction 1
Biochemical Reactions Induced by Drying 5
Physical Transformations During Drying 9
Mechanical Transformations Induced by Drying 14
Storage and Rehydration of Food Products 16
Conclusion 17
References 18
Impact of Drying on the Mechanical Properties and Crack
Formation in Rice 21
Catherine Bonazzi and Francis Courtois
Introduction 21
Impact of Drying Conditions on Head Rice Yield for Paddy
and Parboiled Rice 24
Characterization of Fissures Formation by Image
Analysis Techniques 28
Characterization of the Mechanical Properties of the
Rice Material 33
Stress–Strain Relationships for Linear Materials 34
Failure Strength in Rice Grains 36
Modeling the Impact of Drying on the Final Quality
of Rice Grains 39
Conclusion 45

	~
/ I	Content

3	Characterization and Control of Physical Quality Factors During Freeze-Drying of Pharmaceuticals in Vials 51
	Julien Andrieu and Séverine Vessot
3.1	Introduction 51
3.2	Characterization Methods of the Key Quality Factors During Freeze-Drying of Pharmaceuticals in Vials 52
3.2.1	State Diagram, Melting Curves, Vitreous Transition, Collapse Temperature 54
3.2.2	Characterization Methods: DSC, MDSC, Freeze-Drying Microscopy 55
3.2.3	Ice Structure and Morphology: Cold Chamber Optical Microscopy 55
3.2.4	Heat Flux Heterogeneity in the Sublimation Chamber 57
3.2.5	Permeability of Freeze-Drying Cake: Pressure Rise Tests 59
3.2.6	Estimation of Mean Product Temperature 61
3.3	Influence of Freezing and Freeze-Drying Parameters on Physical Quality Factors 63
3.3.1	Influence of Freezing Protocol on Ice Morphology 63
3.3.1.1	Influence of Freezing Rate 64
3.3.1.2	Influence of Vial Type and Filling Height 66
3.3.1.3	Annealing 67
3.3.2	Controlled Nucleation 70
3.3.2.1	Controlled Nucleation by Ultrasound Sonication 70
3.3.2.2	Effect of Ultrasound on Structural and Morphological Properties 72
3.3.3	Relationship between Nucleation Temperatures and Sublimation Rates 73
3.3.4	Freeze-Dried Cake Morphology 74
3.3.4.1	Water Vapor Mass Transfer Resistance 74
3.3.4.2	Freeze-Dried Layer Permeability 76
3.3.5	Importance of Temperature Control 78
3.3.6	Influence of Operating Conditions on Sublimation Kinetics 79
3.4	Product Quality and Stability During Drying and Storage 83
3.4.1	Product Quality and Formulation 83
3.4.2	Product Quality and Polymorphism 84
3.5	Conclusions 85
	References 87
4	In-Line Product Quality Control of Pharmaceuticals In Freeze-Drying
	Processes 91
	Antonello A. Barresi and Davide Fissore
4.1	Introduction 91
4.2	Control of the Freezing Step 94
4.3	Monitoring of the Primary Drying 96

4.3.1	Monitoring of Single Vials 99
4.3.2	Monitoring of a Group of Vials 103
4.3.3	Monitoring of the Whole Batch 106
4.3.3.1	Detection of the Endpoint of the Primary Drying 106
4.3.3.2	Monitoring the Primary Drying Using the Measurement
	of the Sublimation Flux 113
4.3.3.3	Monitoring the Primary Drying Using Methods Based
	on the PRT 114
4.4	Control of the Primary Drying 125
4.5	Monitoring and Control of Secondary Drying 135
4.6	Quality by Design 139
4.7	Continuous Freeze-Drying 142
4.8	Conclusion 143
	References 146
5	Understanding and Preventing Structural Changes During
	Drying of Gels 155
	Thomas Metzger, Angélique Léonard, Wahbi Jomaa,
	and Hajime Tamon
5.1	Introduction 155
5.2	Gels and Their Applications – Quality Aspects 156
5.2.1	Preparation of Wet Gels 156
5.2.1.1	Silica Gels 156
5.2.1.2	Resorcinol-Formaldehyde (RF) Gels 157
5.2.2	Properties of Dry Gels 158
5.2.3	Applications of Dry Gels 160
5.3	Structural Characterization of Gels – Quality Assessment 162
5.3.1	Characterization of Wet Gels 162
5.3.1.1	Small Angle X-Ray Scattering (SAXS) 162
5.3.1.2	Thermoporometry 164
5.3.2	Characterization of Dry Gels 166
5.3.2.1	Nitrogen Adsorption 166
5.3.2.2	Mercury Porosimetry 168
5.3.2.3	Other Methods 171
5.3.3	Characterization of Gels During Drying 172
5.4	Drying Methods for Gels – Quality Loss 174
5.4.1	Convective Drying 174
5.4.1.1	Introduction 174
5.4.1.2	Shrinkage 175
5.4.1.3	Differential Shrinkage and Stress 177
5.4.1.4	Cracking 180
5.4.2	Freeze-drying 182
5.4.3	Supercritical Drying 185
5.4.3.1	Supercritical Drying of the Initial Solvent 185
.4.3.2	Low-Temperature Process with CO ₂ 187

VIII	Contents
------	----------

5.5	Advanced Drying Techniques – Preserving Quality 189
5.5.1	Subcritical Drying 189
5.5.2	Freeze-Drying 190
5.5.2.1	General Remarks 190
5.5.2.2	RF and Carbon Cryogels 192
5.5.2.3	Ice Templating (for Silica Gels) 195
5.5.3	Vacuum Drying 197
5.5.4	Convective Drying 198
5.5.4.1	Preliminary Remarks 198
5.5.4.2	Preventing Shrinkage and Cracks by Aging
	(Silica Gels) 199
5.5.4.3	Making Shrinkage Reversible by Surface Modification
	(Silica Gels) 201
5.5.4.4	RF Gels – From First Results to a Systematic
	Investigation 204
5.5.4.5	Aging of RF Gels 208
5.5.4.6	Concluding Remarks 209
5.5.5	Microwave Drying 210
5.6	Advanced Modeling of Convective Drying - Understanding
	Quality 211
5.6.1	Macroscopic Models 211
5.6.1.1	General Remarks 211
5.6.1.2	Diffusion Model 211
5.6.1.3	More Rigorous Modeling 217
5.6.2	Development of A Pore-Scale Model 218
5.7	Summary 220
	References 223
_	A Like In the Co. Building 22
6	Morphology and Properties of Spray-Dried Particles 231
<i>C</i> 1	Peter Walzel and Takeshi Furuta
6.1	Introduction 231
6.2	Morphology of Spray-Dried Particles 234
6.2.1	Classification of the Morphology of Spray-Dried Powders 234
6.2.2	Solutions of Polymora 240
6.2.3	Solutions of Polymers 240
6.2.4 6.2.5	Suspensions Containing Small Solid Particles 240 Suspensions Containing Large Solid Particles 244
6.2.6	Suspensions Containing Large Solid Particles 244 Complex Dispersions Such as Emulsions and Other
0.2.0	Formulations 244
6.2.6.1	Hard Shell Particles 244
6.2.6.2	Gelatinization 245
6.2.6.3	Microencapsulated Flavor Powders Formed from Emulsions 245
6264	
6.2.6.4	Particles from Proteins, Enzymes and Carrier Materials 247
6.2.7	Particles Obtained in Freeze Spray Drying 251

6.2.8	Particles Formed in Integrated Fluidized Beds 253
6.3	Retention of Flavor in Spray-Dried Food Products 253
6.3.1	General Remarks on Microencapsulation 253
6.3.2	Encapsulation of Flavor by Spray Drying 255
6.3.2.1	Theory and Mechanism 255
6.3.2.2	Microencapsulation of Hydrophilic Flavors 255
6.3.2.3	Spray Drying of Emulsified Hydrophobic Flavors 256
6.3.2.4	Factors Affecting the Retention of Emulsified Hydrophobic
	Flavors During Spray Drying 257
6.3.2.5	Stickiness of the Spray-Dried Powder 260
6.3.3	Release and Oxidation of the Encapsulated Flavor During
	Storage 261
6.3.3.1	Influence of Glass Temperature on the Storage
	Stability of the Encapsulated Flavor 261
6.3.3.2	Release of Flavor from Spray-Dried Powder
	During Storage 262
6.3.3.3	Oxidation of Encapsulated Flavor During Storage 267
6.3.3.4	Relaxation Process Correlation by Glass Transition
	Temperature 267
6.4	Encapsulation and Microencapsulation of Enzymes
	and Oil by Spray Drying 269
6.4.1	Microencapsulation of Enzymes by Spray Drying 269
6.4.2	Stress on Proteins During the Spray Drying Processes 270
6.4.2.1	Adsorption Stress 270
6.4.2.2	Shear Stress 271
6.4.2.3	Thermal and Dehydration Stress 271
6.4.3	Protein Encapsulation Theory by Spray Drying 272
6.4.4	Spray Drying of Protein Solutions 273
6.4.4.1	Drying of a Single Suspended Droplet 273
6.4.4.2	Stabilization of Enzymes During Spray Drying: Effects
	of Formulation Composition 274
6.4.4.3	Effect of Process Variables on the Stabilization of Enzymes
	During Spray Drying 275
6.4.5	Microencapsulation of Oil 278
6.4.5.1	Spray Drying of Oil Emulsions 278
6.4.5.2	Oxidation of Lipids Encapsulated in Spray-Dried Particles 279
6.5	General Quality Aspects 280
6.5.1	Porosity of Spray-Dried Particles and Species
	Distribution 280
6.5.2	Strength of Particles and Attrition 281
6.5.3	Bulk Density and Product Flowability 282
6.5.4	Residual Moisture 282
6.5.5	Reconstitution Behavior 283
6.6	Concluding Remarks 284
	References 286

x Co	ontents	
7		Particle Formulation in Spray Fluidized Beds 295
		Mirko Peglow, Sergiy Antonyuk, Michael Jacob, Stefan Palzer,
7	1	Stefan Heinrich, and Evangelos Tsotsas
7.		Introduction 295
7.		General Principles of Particle Formulation in Spray Fluidized Beds 296
7.	3	Influence of Material Properties 299
7.	3.1	Adhesion Mechanisms and Mechanical Strength
		of Agglomerates 299
7.	3.1.1	Material Structure and Properties 300
7.	3.1.2	Van der Waals Forces 301
7.	3.1.3	Capillary Forces Due to Liquid Bridges Between Particles 303
7	3.1.4	Viscous Forces in Sinter Bridges Between Amorphous
,	3.1.1	Particles 304
7.	3.1.5	Mechanical Strength of Agglomerates 308
7.	3.2	Breakage of Agglomerates and of Granulated
		Products 315
7.	3.2.1	Elastic-Brittle Breakage Behavior 316
7.	3.2.2	Elastic-Plastic Breakage Behavior 317
7.	3.2.3	Plastic Breakage Behavior 319
7.	3.2.4	Breakage of Granules with Layered Structure 320
7.	3.3	Consideration of Primary Particle Properties
		in Agglomeration 321
7.4	4	Influence of Operating Conditions 324
7.	4.1	Mechanical Strength of Granulated Particles 324
7.4	4.1.1	Influence of Binder Content in the Sprayed Solution 325
7.	4.1.2	Influence of the Particle Retention Time 326
7.4	4.1.3	Influence of Process Temperature 327
7.4	4.2	Catalyst Impregnation in Fluidized Beds 329
7.5	5	Influence of Apparatus Design 332
7.5	5.1	Apparatus Design Features with an Influence on
		Product Quality 332
7.5	5.2	Residence Time Distribution 338
7.5	5.3	Dispersive Growth in Batch Granulation 344
7.5	5.4	Discrete Particle Modeling of a Wurster Coater 349
7.	5.4.1	Principles of the DPM 350
7.5	5.4.2	Parameters for the DPM Simulation 351
7.5	5.4.3	Influence of the Spout Velocity 352

Influence of the Wurster Gap Distance 355

Stochastic Discrete Modeling of Agglomeration

Neural Networks, Encapsulation 357

General Principles 363

Results 367

Computational Method 364

7.5.4.4

7.6

7.7

7.7.1

7.7.2

7.7.3

7.7.3.1	Effect of Liquid Flow Rate and Viscosity	367
7.7.3.2	Thermal Effects 367	
7.7.3.3	Effect of Particle Porosity 369	
7.8	Summary and Outlook 372	
	References 374	

Index 379

Contents

Series Preface XI

Preface of Volume 4 XV

List of Contributors XIX

Recommended Notation XXIII

EFCE Working Party on Drying; Address List XXIX

1	Fundamentals of Energy Analysis of Dryers 1
	Ian C. Kemp
1.1	Introduction 1
1.2	Energy in Industrial Drying 2
1.3	Fundamentals of Dryer Energy Usage 3
1.3.1	Evaporation Load 3
1.3.2	Dryer Energy Supply 4
1.3.3	Evaluation of Energy Inefficiencies and Losses: Example 5
1.3.3.1	Dryer Thermal Inefficiencies 6
1.3.3.2	Inefficiencies in the Utility (Heat Supply) System 8
1.3.3.3	Other Energy Demands 13
1.3.4	Energy Cost and Environmental Impact 14
1.3.4.1	Primary Energy Use 14
1.3.4.2	Energy Costs 14
1.3.4.3	Carbon Dioxide Emissions and Carbon Footprint 15
1.4	Setting Targets for Energy Reduction 16
1.4.1	Energy Targets 16 .
1.4.2	Pinch Analysis 17
1.4.2.1	Basic Principles 17 ·
1.4.2.2	Application of Pinch Analysis to Dryers 19
1.4.2.3	The Appropriate Placement Principle Applied to Dryers 21
1.4.2.4	Pinch Analysis and Utility Systems 24
1.4.3	Drying in the Context of the Overall Process 25
1.5	Classification of Energy Reduction Methods 26
1.5.1	Reducing the Heater Duty of a Convective Dryer 28
1.5.2	Direct Reduction of Dryer Heat Duty 29
1.5.2.1	Reducing the Inherent Heat Requirement for Drying 29

VI	Contents	
	1.5.2.2	Altering Operating Conditions to Improve Dryer Efficiency 30
	1.5.3	Heat Recovery and Heat Exchange 31
	1.5.3.1	Heat Exchange Within the Dryer 31
	1.5.3.2	Heat Exchange with Other Processes 32
	1.5.4	Alternative Utility Supply Systems 32
	1.5.4.1	Low Cost utilities 33
	1.5.4.2	Improving Energy Supply System Efficiency 33
	1.5.4.3	Combined Heat and Power 34
	1.5.4.4	Heat Pumps 36
	1.6	Case Study 37
	1.6.1	Process Description and Dryer Options 37
	1.6.2	Analysis of Dryer Energy Consumption 38
	1.6.3	Utility Systems and CHP 42
	1.7	Conclusions 43
		References 45
	2	Mechanical Solid-Liquid Separation Processes and Techniques 47
		Harald Anlauf
	2.1	Introduction and Overview 47
	2.2	Density Separation Processes 51
	2.2.1	Froth Flotation 51
	2.2.2	Sedimentation 54
	2.3	Filtration 61
	2.3.1	Cake Filtration 61
	2.3.2	Sieving and Blocking Filtration 72
	2.3.3	Crossflow Micro- and Ultra-Filtration 73
	2.3.4	Depth and Precoat Filtration 75
	2.4	Enhancement of Separation Processes by Additional Electric
		or Magnetic Forces 80
	2.5	Mechanical/Thermal Hybrid Processes 83
	2.6	Important Aspects of Efficient Solid–Liquid Separation Processes 85
	2.6.1	Mode of Apparatus Operation 85
	2.6.2	Combination of Separation Apparatuses 87
	2.6.3	Suspension Pre-Treatment Methods to Improve Separation
	2 =	Conditions 91
	2.7	Conclusions 94 .
		References 95
	3	Energy Considerations in Osmotic Dehydration 99
	2.1	Hosahalli S. Ramaswamy and Yetenayet Bekele Tola
	3.1	Scope 99
	3.2	Introduction 100
	3.3	Mass Transfer Kinetics 101
	3.3.1	Pretreatments 101
	3.3.2	Product 102

3.3.3	Osmotic Solution 103
3.3.4	Treatment Conditions 103
3.4	Modeling of Osmotic Dehydration 104
3.5	Osmotic Dehydration – Two Major Issues 105
3.5.1	Quality Issues 105
3.5.2	Energy Issues 106
3.5.2.1	Osmo-Convective Drying 107
3.5.2.2	Osmo-Freeze Drying 109
3.5.2.3	Osmo-Microwave Drying 111
3.5.2.4	Osmotic-Vacuum Drying 113
3.6	Conclusions 114
	References 116
4	Heat Pump Assisted Drying Technology – Overview with Focus on
	Energy, Environment and Product Quality 121
	Sachin V. Jangam and Arun S. Mujumdar
4.1	Introduction 121
1.2	Heat Pump Drying System – Fundamentals 122
1.2.1	Heat Pump 122
1.2.2	Refrigerants 125
1.2.3	Heat Pump Dryer 127
1.2.4	Advantages and Limitations of the Heat Pump Dryer 130
1.3	Various Configurations/Layout of a HPD 131
1.4	Heat Pumps – Diverse Options and Advances 132
1.4.1	Multi-Stage Heat Pump 132
1.4.2	Cascade Heat Pump System 133
1.4.3	Use of Heat Pipe 134
1.4.4	Chemical Heat Pump (CHP) 135
1.4.5	Absorption Refrigeration Cycle 138
1.5	Miscellaneous Heat Pump Drying Systems 140
1.5.1	Solar-Assisted Heat Pump Drying 140
1.5.2	Infrared-Assisted Heat Pump Dryer 143
1.5.3	Microwave-Assisted Heat Pump Drying 143
1.5.4	Time-Varying Drying Conditions and Multi-Mode Heat
	Pump Drying 145
1.5.5	Heat Pump Assisted Spray Drying 147
1.5.6	Modified Atmosphere Heat Pump Drying 148
1.5.7	Atmospheric Freeze Drying Using Heat Pump 149
1.6	Applications of Heat Pump Drying 150
1.6.1	Food and Agricultural Products 150
1.6.2	Drying of Wood/Timber 150
1.6.3	Drying of Pharmaceutical/Biological Products 152
1.7	Sizing of Heat Pump Dryer Components 153
1.8	Future Research and Development Needs in Heat Pump Drying 150
	References 158

VIII	Contents
------	----------

5	Zeolites for Reducing Drying Energy Usage `163
	Antonius J. B. van Boxtel, Moniek A. Boon, Henk C. van Deventer,
	and Paul J. Th. Bussmann
5.1	Introduction 163
5.2	Zeolite as an Adsorption Material 164
5.2.1	Zeolite 164
5.2.2	Comparing the Main Sorption Properties of Zeolite with
	other Adsorbents 166
5.3	Using Zeolites in Drying Systems 168
5.3.1	Drying Systems 168
5.3.2	Direct Contact Drying 169
5.3.3	Air Dehumidification 170
5.4	Energy Efficiency and Heat Recovery 173
5.4.1	Defining Energy Efficiency 173
5.4.2	Energy Recovery for a Single-Stage System 174
5.4.3	Energy Recovery in a Multi-Stage System 176
5.4.4	Energy Recovery with Superheated Steam 178
5.5	Realization of Adsorption Dryer Systems 180
5.5.1	Adsorption Dryer Systems for Zeolite 180
5.5.2	Adsorption Wheel Versus Packed Bed 181
5.5.3	Zeolite Mechanical Strength 182
5.5.4	Long Term Capacity of Zeolite 183
5.5.5	Zeolite Adsorption Wheel 183
5.6	Cases 185
5.6.1	Zeolite-Assisted Drying in the Dairy Industry 185
5.6.2	Zeolite-Assisted Manure and Sludge Drying 189
5.6.3	Direct Contact Drying of Seeds with Zeolites 191
5.7	Economic Considerations 193
5.8	Perspectives 195
	References 196
6	Solar Drying 199
	Joachim Müller and Werner Mühlbauer
6.1	Introduction 199
6.2	Solar Radiation 200
6.3	Solar Air Heaters 204
6.4	Design and Function of Solar Dryers · 210
6.4.1	Classification of Solar Dryers 210
6.4.2	Solar Dryers with Natural Convection for Direct Solar Drying 212
6.4.3	Solar Dryers with Natural Convection for Indirect Drying 213
6.4.4	Solar Dryers with Forced Convection for Direct Drying 214
6.4.5	Solar Dryers with Forced Convection for Indirect Drying 218
6.4.6	Dryers with Roof-Integrated Solar Air Heaters 223
6.5	Solar Drying Kinetics 226
6.5.1	Empirical Drying Curves in Solar Drying 226

6.5.2	Equilibrium Model for Solar Drying Kinetics 227	
6.6	Control Strategies for Solar Dryers 231	
6.6.1	Airflow Management During the Night 231	
6.6.2	Recirculation of Drying Air 232	
6.6.3	Back-Up Heating Systems 232	
6.7	Economic Feasibility of Solar Drying 234	
6.7.1	Drying of Timber in Brazil 235	
6.7.2	Drying of Tobacco in Brazil 237	
6.8	Conclusions and Outlook 239	
	References 242	
7	Energy Issues of Drying and Heat Treatment for Solid Wood	
	and Other Biomass Sources 245	
	Patrick Perré, Giana Almeida, and Julien Colin	
7.1	Introduction 245	
7.2	Wood and Biomass as a Source of Renewable Material	
7.3	and Energy 245 Energy Consumption and Energy Savings in the Drying	
	of Solid Wood 254	
7.3.1	Kiln-Drying of Solid Wood: A Real Challenge 254	
7.3.2	The Conventional Drying of Wood 258	
7.3.2.1	The Design of Conventional Kilns 258	
7.3.2.2	Drying Time and Energy Efficiency 259	
7.3.3	Theoretical Evaluation of the Kiln Efficiency 263	
7.3.4	Two Case Studies of Kiln Efficiency 266	
7.3.5	Rules for Saving Energy 269	
7.3.5.1	Energy Savings in Conventional Kilns 269	
7.3.5.2	Energy Saving by Alternative Technologies 270	
7.4	Preconditioning of Biomass as a Source of Energy: Drying	
	and Heat Treatment 271	
7.4.1	Importance of Biomass Drying as a Preconditioning Step 271	
7.4.1.1	Dryers for Biomass 273	
7.4.1.2	Numerical Approach to the Continuous Drying of Woody Biomass 2	276
7.4.2	Interest of Heat Treatment as a Preconditioning Step 281	
7.5	Conclusions 287	
	References 289	
8	Efficient Sludge Thermal Processing: From Drying to	
	Thermal Valorization 295	
	Patricia Arlabosse, Jean-Henry Ferrasse, Didier Lecomte, Michel Crine,	
	Yohann Dumont, and Angélique Léonard	
8.1	Introduction to the Sludge Context 295	
8.1.1	Origin, Production and Valorization Issues 295	
8.1.2	Sludge: A Complex Material 297	
8.1.3	Useful Properties for Energy Valorization 299	

Contents	•
8.2	Sludge Drying Technologies 300
8.2.1	General Remarks 300
8.2.2	Convective Drying Methods and Dryer Types 301
8.2.3	Indirect Contact Drying Methods and Dryer Types 305
8.2.3.1	Rotor Design and Operation of the Drying Process 306
8.2.3.2	Drying Performances 308
8.2.4	Solar Drying and Dryer Types 310
8.2.5	Combined and Hybrid Drying 311
8.2.6	Sludge Frying, an Alternative to Conventional Drying 311
8.2.6.1	Heat and Mass Transfer During Fry-Drying 312
8.2.6.2	Energy and Environmental Aspects 313
8.2.7	Pathogen Reduction 314
8.3	Energy Efficiency of Sludge Drying Processes 315
8.3.1	Specific Heat Consumption of Sludge Dryers 315
8.3.2	Towards the Reduction of Energy Consumption Associated
	with Sludge Drying 316
8.3.3	Case Studies 316
8.4	Thermal Valorization of Sewage Sludge 318
8.4.1	General Description of the Thermal Processes Available
	for Sewage Sludge 318
8.4.2	Desired Water Content for Thermal Processes 319
8.4.3	Including a Drying Step Before Thermal Valorization 320
8.5	Energy Efficiency of Thermal Valorization Routes 321
8.5.1	Importance of Dryer Efficiency 321
8.5.2	Combining Sludge Drying and Thermal Valorization by
	Integrating on Site 322
8.6	Conclusions 324

Index 331

References 325