660.2842 INDI

CONTENTS

1. Mechanism of the thermal decomposition of methane	1
2. Acceleration, inhibition, and stoichiometric orientation, by hydrogenated	
additives, of the thermal cracking of alikenes at ca. 500°c	17
3. Influence of small quantities oxygen on the thermal cracking of	
alkanes at ca. 500°c	37
4. Mechanistic studies of methane pyrolysis at low pressures	51
5. Oxidative pyrolyses of selected hydrocarbons using the wall – presence	
of deuterium	72
6. Kinetics and mechanism of hydrogenolysis of propylene in the presence	
of deuterium	84
7. Kinetics of the pyrolysis of propane – propylene mixtures	99
8. Purolysis of 1- butane and cis-2 –butane	117
9. Pyrolysis of 2,2 –dimetylpropane in a continuous flow stirred tank reactor	131
10. A kinetic study on the formation of aromatics during pyrolysis of	
petroleum hydrocarbons	152
11. Kinetics of product formation in the H2 s- promoted pyrolysis	
of 2- methyl – 2 pentene	178
12. Factors affecting methyl pentane pyrolysis	197
13. Reactor surface effects during propylene pyrolysis	218
14. Surface effects during pyrolysis of ethane in tubular flow reactors	241
15. Pyrolysis of propane in tubular flow reactors constructed of	
different materials	261
16. Surface reaction occurring during pyrolysis of light paraffins	274
17. Role of the reactor surface in pyrolysis of light paraffins and olefins	296
18. Pyrolysis scale study unit design and data correlation	311
19. Bench scale study on crude oil pyrolysis for olefin production by means	
of fluidized bed reactor	327
20. An industrial application of pyrolysis technology: lummus srt III module	345
21. Pyrolysis of naphtha and of kerosene in the Kellogg millisecond furnace	373
22. The advanced cracking reactor: A process for cracking hydrocarbon	
liquids at short residence times, high temperatures, and low partial pressures	392
23. Pyrolysis gasoline /gas oil hydrotreating	412
24. Kinetic-mathematical model for naphtha pyrolyzer tubular reactors	423
25. Mechanism and kinetics of the thermal hydrocracking of single polyaromatic compounds	444
26. Thermal decarbonylation of quinones in the presence of hydrogen	457
27. Fuels and chemicals by pyrolysis	476

28. Effect of heating rate on the pyrolysis of oil shale

29. Index

492 505