Contents

About the Authors iii Preface v Nomenclature xvii Dimensions and Units xxvii

PART 1 FUNDAMENTAL CONCEPTS

1. Basic Separation Concepts 2

- 1.1* Industrial Chemical Processes 2
- 1.2* Basic Separation Techniques 5
- 1.3^O Separations by Phase Addition or Creation 7
- 1.4^O Separations by Barriers 12
- 1.5° Separations by Solid Agents 13
- 1.6^O Separations by External Field or Gradient 15
- 1.7* Component Recoveries and Product Purities 15
- 1.8* Separation Factor 19
- 1.9^B Introduction to Bioseparations 20
- 1.10^{*} Selection of Feasible Separations 30 Summary, References, Exercises

2. Thermodynamics 37

- 2.1* Energy, Entropy, and Availability Balances 37
- 2.2* Phase Equilibria 40
- 2.3^O Ideal Models 44
- 2.4^O Graphical Correlations 47
- 2.5^O Nonideal Models 50
- 2.6^O Liquid Activity-Coefficient Models 56
- 2.7^O Difficult Mixtures 67
- 2.8* Selecting an Appropriate Model 68
- 2.9^B Thermodynamics of Biological Species 68 Summary, References, Exercises

3. Mass Transfer 91

- 3.1* Steady-State Molecular Diffusion 92
- 3.2* Diffusivities 96
- 3.3* Mass Transfer Through Stationary Media 108
- 3.4* Mass Transfer in Laminar Flow 114
- 3.5* Mass Transfer in Turbulent Flow 122
- 3.6^{*} Models for Mass Transfer in Fluids with a Fluid–Fluid Interface 128
- 3.7* Two-Film Theory and Overall Mass-Transfer Coefficients 132
- 3.8^B Driving Forces for Molecular Mass Transfer 137 Summary, References, Exercises

4. Single Equilibrium Stages 150

- 4.1^{*} Degrees of Freedom 150
- 4.2* Zeotropic Vapor–Liquid Systems 152
- 4.3* Azeotropic Systems 155
- 4.4* Multicomponent Flash Calculations 157
- 4.5* Ternary Liquid–Liquid Systems 163
- 4.6^O Multicomponent Liquid–Liquid Systems 169
- 4.7* Solid–Liquid Systems 171
- 4.8^{*} Gas–Liquid Systems 177
- 4.9* Gas–Solid Systems 178
- 4.10• Multiphase Systems 180 Summary, References, Exercises

5. Cascades and Hybrid Systems 195

- 5.1* Cascade Configurations 195
- 5.2^O Solid–Liquid Cascades 196
- 5.3* Single-Section, Extraction Cascades 198
- 5.4* Multicomponent Vapor–Liquid Cascades 200
- 5.5^o Membrane Cascades 204

- 5.6^o Hybrid Systems 206
- 5.7* Degrees of Freedom for Cascades 208 Summary, References, Exercises

PART 2

SEPARATIONS BY PHASE ADDITION OR CREATION

- 6. Absorption and Stripping 223
 - 6.1° Equipment 225
 - 6.2^O Design Considerations 229
 - 6.3* Graphical Equilibrium-Stage Methods 231
 - 6.4* Algebraic Methods 235
 - 6.5^O Stage Efficiency 237
 - 6.6[°] Flooding, Pressure Drop, and Mass Transfer for Trayed Columns 244
 - 6.7* Rate-Based Method for Packed Columns 252
 - 6.8^O Liquid Holdup, Flooding, Pressure Drop, and Mass-Transfer for Packed Columns 256
 - 6.9• Concentrated Solutions 270 Summary, References, Exercises

7. Binary Distillation 280

- 7.1^O Design Considerations 281
- 7.2* McCabe–Thiele Method 283
- 7.3^o Extensions of the McCabe–Thiele Method 293
- 7.4^O Stage Efficiency 303
- 7.5^o Column Diameter 306
- 7.6* Rate-Based Method for Packed Columns 307
- 7.7^o Introduction to the Ponchon–Savarit Method 310
 Summary, References, Exercises

8. Liquid–Liquid Extraction 323

- 8.1° Equipment 326
- 8.2^O Design Considerations 333
- 8.3* Hunter–Nash Graphical Method 337
- 8.4^O Maloney–Schubert Graphical Method 351
- 8.5^o Theory and Scale-up of Extractor Performance 354
- 8.6^B Extraction of Bioproducts 368 Summary, References, Exercises

9. Approximate Multicomponent Methods 389

- 9.1* Fenske–Underwood–Gilliland (FUG) Method 389
- 9.2* Kremser Method 402 Summary, References, Exercises

10. Computer-Aided Equilibrium-Based Methods 410

- 10.1° Theoretical Model 410
- 10.2[•] Strategy of Mathematical Solution 412
- 10.3[•] Equation-Tearing Procedures 413
- 10.4 Newton-Raphson (NR) Method 427
- 10.5• Inside-Out Method 434 Summary, References, Exercises

11. Enhanced Distillation and Supercritical Extraction 448

- 11.1* Triangular Graphs 449
- 11.2* Extractive Distillation 460
- 11.3° Salt Distillation 464
- 11.4[•] Pressure-Swing Distillation 466
- 11.5[•] Homogeneous Azeotropic Distillation 468
- 11.6^{*} Heterogeneous Azeotropic Distillation 472
- 11.7[•] Reactive Distillation 479
- 11.8• Supercritical-Fluid Extraction 485 Summary, References, Exercises

12. Rate-Based Models 496

- 12.1° Rate-Based Model 498
- 12.2 Thermodynamics and Transport 500
- 12.3° Transport Coefficients and Interfacial Area 503
- 12.4• Flow Patterns 503
- 12.5• Calculation Methods 504 Summary, References, Exercises

13. Batch Distillation 514

- 13.1* Rayleigh Distillation 514
- 13.2^{*} Batch Rectification 517
- 13.3[•] Batch Stripping 519
- 13.4° Liquid Holdup 520
- 13.5° Shortcut Method 520
- 13.6° Stage-by-Stage Methods 522
- 13.7 Intermediate-Cut Strategy 531
- 13.8• Optimal Control 532 Summary, References, Exercises

PART 3 SEPARATIONS BY BARRIERS AND SOLID AGENTS

14. Membrane Separations 542

- 14.1* Materials 545
- 14.2* Modules 548
- 14.3* Mass Transfer 551
- 14.4* Dialysis 570
- 14.5° Electrodialysis 572
- 14.6* Reverse Osmosis 575
- 14.7^o Gas Permeation 579
- 14.8^O Pervaporation 581
- 14.9^B Membranes in Bioprocessing 585 Summary, References, Exercises

15. Adsorption, Ion Exchange, Chromatography,

and Electrophoresis 617

- 15.1* Sorbents 619
- 15.2* Equilibrium 628
- 15.3* Kinetics and Transport 638
- 15.4^o Equipment 662
- 15.5* Slurry and Fixed-Bed Adsorption Systems 667
- 15.6^B Continuous Adsorption Systems 676
- 15.7^O Ion-Exchange Cycle 687
- 15.8^B Electrophoresis 688 Summary, References, Exercises

PART 4

SEPARATIONS THAT INVOLVE A SOLID PHASE

- 16. Leaching 708
 - 16.1° Equipment 709
 - 16.2^o Equilibrium-Stage Model 716
 - 16.3^O Rate-Based Model 721

Summary, References, Exercises

17. Crystallization, Desublimation, and Evaporation 729

- 17.1^{*} Crystal Geometry 732
- 17.2* Thermodynamics 738
- 17.3* Kinetics and Mass Transfer 743
- 17.4^o Equipment 748
- 17.5° MSMPR Crystallization Model 752
- 17.6^o Precipitation 756
- 17.7* Melt Crystallization 758
- 17.8^O Zone Melting 762
- 17.9^O Desublimation 764
- 17.10* Evaporation 766
- 17.11^B Bioproduct Crystallization 773 Summary, References, Exercises

18. Drying of Solids 790

- 18.1^o Equipment 791
- 18.2* Psychrometry 807
- 18.3* Moisture Content 814
- 18.4* Drying Periods 817
- 18.5^O Dryer Models 830
- 18.6^B Drying of Bioproducts 838 Summary, References, Exercises

PART 5

MECHANICAL SEPARATION OF PHASES

19. Mechanical Phase Separations 848

- 19.1^O Separation Devices 850
- 19.2^O Industrial Particle Separators 851
- 19.3* Design of Particle Separators 859
- 19.4* Design Features for Cake Filtration 866
- 19.5* Centrifuge Devices 872
- 19.6* Wash Cycles 874
- 19.7^B Mechanical Separations
 in Biotechnology 876
 Summary, References, Exercises

Answers to Selected Exercises 887 Index 891

Study Questions (Online)

^{*} Suitable for an UG course

[°] Optional

Advanced

^B Bioseparations