CONTENTS

1.	Introduction					
2.	Rela	ation Between Zeolite Structure and Its Catalytic Activity	5			
	I.	Zeolites	6			
	II.	Pore/Channel Systems	7			
		A. 8-Membered Oxygen Ring Systems	7			
		B. 10-Membered Oxygen Ring Systems	10			
		C. Dual Pore Systems	13			
		D. 12-Membered Oxygen Ring Systems	14			
		E. Mesopore Systems	14			
	III.	Structure Features of Zeolites and the Quantitation of Acidic Framework				
		Aluminum Sites	14			
	IV.	Distribution and Location of Acid Sites	21			
	V.	Structure Effect on Acid Sites	23			
		A. Constraint Index	23			
		B. Other Catalytic Characterization Tests	25			
		C. Para Selectivity	28			
	VI.	Enhanced Acid Sites	29			
	VII.	Acid Sites in Isomorphous Substituted Zeolites	30			
		References	31			
3.	Prin	Principal Methods of Achieving Molecular Shape Selectivity				
	I.	Size Exclusion	38			
	II.	Coulombic Field Effects	43			
	III.	Configurational Diffusion	46			
	IV.	Spatiospecificity, or Transition Sate Selectivity	54			
	V.	Traffic Control	57			
	VI.	Confinement Effect	58			
		References	59			
4.	Shape Selective Catalysis					
	I.	Reactants of Interest	63			
	II.	Reactions Catalyzed by Zeolites	64			
		A. Olefin Reactions	64			
		B. Paraffin Reactions	76			
		C. Reactions of Aromatic Compounds	85			

	D. Naphthene Reactions	108
	E. Reactions of Oxygen-Containing Compounds	108
	F. Reactions of Nitrogen-Containing Compounds	129
	G. Reactions of Other Nonhydrocarbons	135
	H. Acid Catalyzed Hydrogenation Activity	136
	III. Selective Oxidation with Titanium Zeolites	136
	References	137
5.	Applications in Petroleum Processing	145
	I. Goals of Improvement for Environmentally Clean Fuels	146
	II. Catalytic Cracking of Gas Oils	148
	III. Octane Boosting	150
	A. Reforming of Naphthas	150
	IV. Light Olefins Upgrading Processes	166
	V. Clean Fuels from Light Olefins	168
	VI. Dewaxing of Distillate Fuels and Lube Basestocks	172
	A. Introduction	172
	B. Mobil Distillate Dewaxing Process	174
	C. Jet Fuel Dewaxing	182
	D. Mobil Lube Dewaxing Process	185
	E. Development of Bifunctional Catalytic Dewaxing Process	190
	References	192
6.	Applications in Aromatics Processing	197
	I. BTX Synthesis	198
	A. M2-Forming	198
	B. Xylene Isomerization	201
	C. Xylene Synthesis	204
	D. Xylene by Alkylation of Toluene with Methanol	207
	II. Ethylbenzene and Para-Ethyltoluene	208
	A. Ethylbenzene Synthesis	208
	B. Para-Ethyltoluene Synthesis	209
	III. Spin-Off to Other Chemicals	209
	References	210
7.	Applications in Alternate Fuels and Light Olefins	212
	I. Methanol-to-Gasoline Process	213
	A. Commercial Fixed-Bed Plant	214
	B. Fluid-Bed Development	217
	II. Methanol-to-Light Olefins Process	222

	III.	Synthesis of Ethers	226
	IV.	Synthesis Gas Conversion	228
		A. Composite Catalysts for Direct Synthesis Gas Conversion	228
		B. Mobil Two-Stage Slurry Fischer-Trpsch/ZSM-5 Process	230
		References	235
8.	New	v Opportunities in Shape Selective Catalysis	238
	I.	Upgrading Waxy Crudes	239
	II.	Upgrading Shale Oils	240
	III.	Dewaxing Hydrogen Donor Solvent for Coal Liquefaction	242
	IV.	Converting Natural Gas to Liquid Hydrocarbons	243
	V.	Pre-Engine Converter	245
	VI.	Liquid Fuel from Biomass	247
		A. Direct Conversion of Carbohydrates	247
		B. Biomass Pyrolysis	248
	VII.	Applications in Other Industries	250
		A. Fermentation	250
		B. Zeolitic Membrane Reactors	250
		C. Chemicals	251
		D. Environmental Applications	252
		E. In Vivo Applications	253
		References	257
9.	Con	nclusions	261
Aut	263		

269

Subject Index