CONTENTS

	Preface	xix
Chapter 1	A Little Microbiology	
1.1	Biophysics and the Cell Doctrine	3
1.2	The Structure of Cells	3
	1.2.1 Procaryotic Cells	3
	1.2.2 Eucaryotic Cells	6
	1.2.3 Cell Fractionation	9
	Example 1.1: Analysis of Particle Motion in a Centrifuge	9
3	Important Cell Types	12
	1.3.1 Bacteria	13
	1.3.2 Yeasts	16
	1.3.3 Molds	18
	1.3.4 Algae and Protozoa	21
	1.3.5 Animal and Plant Cells	22
1.4	A Perspective for Further Study	24
	Problems	24
	References	26
Chapter 2	Chemicals of Life	27
2.1	Lipids	29
	2.1.1 Fatty Acids and Related Lipids	29
	2.1.2 Fat-soluble Vitamins, Steroids, and Other Lipids	32
2.2	Sugars and Polysaccharides	34
	2.2.1 D-Glucose and Other Monosaccharides	34
	2.2.2 Disaccharides to Polysaccharides	36
	2.2.3 Cellulose	38
2.3	From Nucleotides to RNA and DNA	42
	2.3.1 Building Blocks, an Energy Carrier, and Coenzymes	42
	2.3.2 Biological Information Storage: DNA and RNA	46
2.4	Amino Acids into Proteins	53
	2.4.1 Amino Acid Building Blocks and Polypeptides	55

- 2.4.2 Protein Structure
- 2.4.3 Primary Structure
- 2.4.4 Three-Dimensional Conformation: Secondary and Tertiary Structure
- 2.4.5 Quaternary Structure and Biological Regulation
- 2.5 Hybrid Biochemicals
 - 2.5.1 Cell Envelopes: Peptidoglycan and Lipopolysaccharides
 - 2.5.2 Antibodies and Other Glycoproteins
- 2.6 The Hierarchy of Cellular Organization Problems References

Chapter 3 The Kinetics of Enzyme-Catalyzed Reactions

- 3.1 The Enzyme-Substrate Complex and Enzyme Action
- 3.2 Simple Enzyme Kinetics with One and Two Substrates
 - 3.2.1 Michaelis-Menten Kinetics
 - 3.2.2 Evaluation of Parameters in the Michaelis-Menten Equation
 - 3.2.3 Kinetics for Reversible Reactions, Two-Substrate Reactions, and Cofactor Activation
- 3.3 Determination of Elementary-Step Rate Constants
 - 3.3.1 Relaxation Kinetics
 - 3.3.2 Some Results of Transient-Kinetics Investigation
- 3.4 Other Patterns of Substrate Concentration Dependence
 - 3.4.1 Substrate Activation and Inhibition
 - 3.4.2 Multiple Substrates Reacting on a Single Enzyme
- 3.5 Modulation and Regulation of Enzymatic Activity
 - 3.5.1 The Mechanisms of Reversible Enzyme Modulation
 - 3.5.2 Analysis of Reversible Modulator Effects on Enzyme Kinetics
- 3.6. Other Influences on Enzyme Activity
 - 3.6.1 The Effect of pH on Enzyme Kinetics in Solution
 - 3.6.2 Enzyme Reaction Rates and Temperature
- **5**.7 Enzyme Deactivation
 - 3.7.1 Mechanisms and Manifestations of Protein Denaturation
 - 3.7.2 Deactivation Models and Kinetics
 - 3.7.3 Mechanical Forces Acting on Enzymes
 - 3.7.4 Strategies for Enzyme Stabilization
- 3.8 Enzyme Reactions in Heterogeneous Systems Problems References

Chapter 4 Applied Enzyme Catalysis

- 4.1 Applications of Hydrolytic Enzymes
 - 4.1.1 Hydrolysis of Starch and Cellulose Exa. Aple 4.1: Influence of Crystallinity on Enzymatic Hydrolysis of Cellulose
 - 4.1.2 Proteolytic Enzymes
 - 4.1.3 Esterase Applications

	4.1.4 Enzyme Mixtures, Pectic Enzymes, and Additional	
	Applications	176
4.2	Other Applications of Enzymes in Solution	177
	4.2.1 Medical Applications of Enzymes	177
	4.2.2 Nonhydrolytic Enzymes in Current and Developing	
	Industrial Technology	179
4.3	Immobilized-Enzyme Technology	180
	4.3.1 Enzyme Immobilization	181
	4.3.2 Industrial Processes	189
	4.3.3 Medical and Analytical Applications of Immobilized	
	Enzymes	194
	4.3.4 Utilization and Regeneration of Cofactors	199
4.4	Immobilized Enzyme Kinetics	202
	4.4.1 Effects of External Mass-Transfer Resistance	204
	4.4.2 Analysis of Intraparticle Diffusion and Reaction	208
	Example 4.2: Estimation of Diffusion and Intrinsic Kinetic	
	Parameters for an Immobilized Enzyme	
	Catalyst	216
	4.4.3 Simultaneous Film and Intraparticle Mass-Transfer	
	Add Effects of Indibitors Temperature and all an	218
	4.4.4 Effects of Infibitors, Temperature, and pH on Immobilized Engune Costelutio Activity and Departmention	220
45	Concluding Remarks	220
	Problems	222
	References	222
		220
Chapter 5	Metabolic Stoichiometry and Energetics	228
5.1	Thermodynamic Principles	233
5.2	Metabolic Reaction Coupling: ATP and NAD	235
	5.2.1 ATP and Other Phosphate Compounds	235
	5.2.2 Oxidation and Reduction: Coupling via NAD	237
5.3	Carbon Catabolism	239
	5.3.1 Embden-Meyerhof-Parnas Pathway	239
	5.3.2 Other Carbohydrate Catabolic Pathways	241
54	Respiration	245
	5.4.1 The TCA Cycle	246
	5.4.2 The Respiratory Chain	246
5.5	Photosynthesis: Tapping the Ultimate Source	251
	5.5.1 Light-Harvesting	251
56	5.5.2 Electron Transport and Photophosphorylation	252
5.0	Biosynthesis	253
	5.6.1 Synthesis of Small Molecules	254
57	5.0.2 Macromolecule Synthesis	201
1.C	571 Desive and Equilitated Diffusion	202
	5.7.1 1 assive and 1 administry Diffusion 5.7.2 Active Transport	203
5.8	Metabolic Organization and Regulation	203
5.0	5.8.1 Key Crossroads and Branch Points in Matchaliam	209
	5.8.2 Enzyme Level Regulation of Metabolism	270

5.9	End Products of Metabolism	273
	5.9.1 Anaerobic Metabolism (Fermentation) Products	274
	5.9.2 Partial Oxidation and Its End Products	
	5.9.3 Secondary Metabolite Synthesis	
5.10	Stoichiometry of Cell Growth and Product Formation	
0.10	5 to t O well Creath Staightometry: Madium Formulati	on

280

5.10.1	Overall Growth Stolenometry. Medium 1 ormulation
	and Yield Factors

- 5.10.2 Elemental Material Balances for Growth
- 5.10.3 Product Formation Stoichiometry
- 5.10.4 Metabolic Energy Stoichiometry: Heat Generation and Yield Factor Estimates
- 5.10.5 Photosynthesis Stoichiometry
- 511 Concluding Remarks Problems References

Chapter 6 Molecular Genetics and Control Systems

- 6.1 Molecular Genetics
 - 6.1.1 The Processes of Gene Expression
 - 6.1.2 Split Genes and mRNA Modification in Eucaryotes
 - 6.1.3 Posttranslational Modifications of Proteins
 - 6.1.4 Induction and Repression: Control of Protein Synthesis
 - 6.1.5 DNA Replication and Mutation
 - 6.1.6 Overview of Information Flow in the Cell
- 6.2 Alteration of Cellular DNA
 - 6.2.1 Virus and Phages: Lysogeny and Transduction
 - 6.2.2 Bacterial Transformation and Conjugation
 - 6.2.3 Cell Fusion
- 6.3 Commercial Applications of Microbial Genetics and Mutant Populations
 - 6.3.1 Cellular Control Systems: Implications for Medium Formulation
 - 6.3.2 Utilization of Auxotrophic Mutants
 - 6.3.3 Mutants with Altered Regulatory Systems
- 6.4 Recombinant DNA Technology
 - 6.4.1 Enzymes for Manipulating DNA
 - 6.4.2 Vectors for Escherichia coli
 - 6.4.3 Characterization of Cloned DNAs
 - 6.4.4 Expression of Eucaryotic Proteins in E. coli
 - 6.4.5 Genetic Engineering Using Other Host Organisms
 - 6.4.6 Concluding Remarks
- 6.5 Growth and Reproduction of a Single Cell
 - 6.5.1 Experimental Methods: Flow Cytometry and Synchronous Cultures
 - 6.5.2 The Cell Cycle of E. coli
 - 6.5.3 The Eucaryotic Cell Cycle
 - Problems

References

7. Ideal Reactors for Kinetics Measurements 378 7.1.1 The Ideal Batch Reactor 378 7.1.2 The Ideal Continuous-Flow Stirred-Tank Reactor (CSTR) 380 7.2 Kinetics of Balanced Growth 382 7.2.1 Monod Growth Kinetics 383 7.2.2 Kinetic Implications of Endogenous and Maintenance Metabolism 7.2.3 Other Forms of Growth Kinetics 391 7.2.4 Other Environmental Effects on Growth Kinetics 392 7.3 Transient Growth Kinetics 394 7.3.1 Growth-Cycle Phases for Batch Cultivation 394 7.3.3 Growth -Cycle Phases for Batch Cultivation 394 7.3.1 Growth of Filamentous Organisms 405 7.4 Structured Batch Growth Models 403 7.3.3 Growth of Filamentous Organisms 405 7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 413 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.5 Product Formation Kinetics 421 7.5.1 Unstructured Models 421
7. Judat Reactors for Kneukes Measurements 378 7.1.1 The Ideal Batch Reactor 378 7.1.2 The Ideal Continuous-Flow Stirred-Tank Reactor (CSTR) 380 7.2 Kinetics of Balanced Growth 382 7.2.1 Monod Growth Kinetics 383 7.2.2 Kinetic Implications of Endogenous and Maintenance Metabolism 388 7.2.3 Other Forms of Growth Kinetics 391 7.2.4 Other Environmental Effects on Growth Kinetics 392 7.3 Transient Growth Kinetics 394 7.3.1 Growth-Cycle Phases for Batch Cultivation 394 7.3.3 Growth of Filamentous Organisms 403 7.3.3 Growth of Filamentous Organisms 403 7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 409 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.5 Product Formation Kinetics 421 <i>Kxample 7.1:</i> Sequential Parameter Estimation for a Simple Batch Fermentation 424 7.5.2 Chemically Stuctured Product Formation Kinetics Models 426 7.5.3 Product Fo
7.1.1 The Ideal Batch Reactor 378 7.1.2 The Ideal Continuous-Flow Stirred-Tank Reactor (CSTR) 380 7.2.4 Kinetics of Balanced Growth 382 7.2.1 Monod Growth Kinetics 383 7.2.2 Kinetic Implications of Endogenous and Maintenance Metabolism 388 7.2.3 Other Forms of Growth Kinetics 391 7.2.4 Other Environmental Effects on 'Growth Kinetics 394 7.3.1 Growth-Cycle Phases for Batch Cultivation 394 7.3.2 Unstructured Batch Growth Models 403 7.3.3 Growth of Filamentous Organisms 405 7.4 Structured Kinetic Models 409 7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 413 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.5 Product Formation Kinetics 421 <i>Kachella Example 7.1: Sequential Parameter Estimation for a Simple Batch Fermentation</i> 424 7.5.2 Chemically Structured Product Formation Kinetics Models 426 7.5.3 Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models 429<
7.12 The Ideal Continuous-Flow sincer Failt Reactor (CSTR) 380 7.2.1 Monod Growth Kinetics 383 7.2.2 Kinetic Implications of Endogenous and Maintenance Metabolism 388 7.2.3 Other Forms of Growth Kinetics 391 7.2.4 Other Environmental Effects on Growth Kinetics 392 7.3 Transient Growth Kinetics 392 7.3.1 Growth-Cycle Phases for Batch Cultivation 394 7.3.2 Unstructured Batch Growth Models 403 7.3.3 Growth of Filamentous Organisms 405 7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 409 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.5 Product Formation Kinetics 421 7.5.1 Unstructured Models 421 7.5.2 Chemically Structured Product Formation Kinetics Models 422 7.5.2 Chemically Structured Product Formation Kinetics Models 429 7.5.4 Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Kinetic Models 429 7.5.4 Product Formation Kinetics by Filamentous Organisms<
7.2 Kinetics of Balanced Growth Kinetics 383 7.2.1 Monod Growth Kinetics 383 7.2.2 Kinetic Implications of Endogenous and Maintenance Metabolism 388 7.2.3 Other Forms of Growth Kinetics 391 7.2.4 Other Environmental Effects on Growth Kinetics 392 7.3 Transient Growth Kinetics 394 7.3.1 Growth-Cycle Phases for Batch Cultivation 394 7.3.2 Unstructured Batch Growth Models 403 7.3.3 Growth of Filamentous Organisms 405 7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 413 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.5 Product Formation Kinetics 421 <i>Example 7.1: Sequential Parameter Estimation for a Simple Batch Fermentation</i> 424 7.5.2 Chemically Stuctured Product Formation Kinetics Models 426 7.5.3 Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models 429 7.5.4 Product Formation Kinetics by Filamentous Organisms 432 7.6 Segregated Kinetic Models of Growth and Product For
7.2.1Motiod Orowin Knietics3837.2.2Kinetic Implications of Endogenous and Maintenance Metabolism3887.2.3Other Forms of Growth Kinetics3917.2.4Other Environmental Effects on Growth Kinetics3927.3Transient Growth Kinetics3947.3.1Growth-Cycle Phases for Batch Cultivation3947.3.2Unstructured Batch Growth Models4037.3.3Growth of Filamentous Organisms4057.4Structured Kinetic Models4097.4.1Compartmental Models4097.4.2Metabolic Models4137.4.3Modeling Cell Growth as an Optimum Process4187.5Product Formation Kinetics421Example 7.1:Sequential Parameter Estimation for a Simple Batch Fermentation4247.5.3Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms4327.5Segregated Kinetic Models of Growth and Product Formation4347.6Segregated Kinetic Models of Cells and Spores4417.8Concluding Remarks4457.9Problems4467.9Thermal-Death Kinetics of Cells and Spores441
Metabolism 388 7.2.3 Other Forms of Growth Kinetics 391 7.2.4 Other Environmental Effects on Growth Kinetics 392 7.3 Transient Growth Kinetics 394 7.3.1 Growth-Cycle Phases for Batch Cultivation 394 7.3.2 Unstructured Batch Growth Models 403 7.3.3 Growth of Filamentous Organisms 405 7.4 Structured Kinetic Models 409 7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 413 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.5 Product Formation Kinetics 421 <i>Example 7.1:</i> Sequential Parameter Estimation for a Simple Batch Fermentation 424 7.5.2 Chemically Structured Product Formation Kinetics Models 426 7.5.3 Product Formation Kinetics by Filamentous Organisms 432 7.5.4 Product Formation Kinetics by Filamentous Organisms 432 <i>Example 7.2:</i> A Morphologically Structured Models 429 7.5.4 Product Formation Kinetics by Filamentous Organisms 432
7.2.3Other Forms of Growth Kinetics3917.2.4Other Environmental Effects on Growth Kinetics3927.3Transient Growth Kinetics3947.3.1Growth-Cycle Phases for Batch Cultivation3947.3.2Unstructured Batch Growth Models4037.3.3Growth of Filamentous Organisms4057.4Structured Kinetic Models4097.4.1Compartmental Models4097.4.2Metabolic Models4137.4.3Modeling Cell Growth as an Optimum Process4187.5Product Formation Kinetics4217.5.1Unstructured Models4217.5.2Chemically Stuctured Product Formation for a Simple Batch Fermentation4247.5.2Chemically Stuctured Product Formation Kinetics Models4297.5.4Product Formation Kinetics by Filamentous Organisms432Example 7.2:A Morphologically Structured Kinetic Model for Cephalosporin C Production4347.6Segregated Kinetic Models of Growth and Product Formation4347.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks445Problems445References454
7.24 Other Environmental Effects on Growth Kinetics 391 7.2.4 Other Environmental Effects on Growth Kinetics 394 7.3 Transient Growth Kinetics 394 7.3.1 Growth-Cycle Phases for Batch Cultivation 394 7.3.2 Unstructured Batch Growth Models 403 7.3.3 Growth of Filamentous Organisms 405 7.4 Structured Kinetic Models 409 7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 413 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.5 Product Formation Kinetics 421 7.5.1 Unstructured Models 421 7.5.2 Chemically Stuctured Product Formation Kinetics Models 426 7.5.3 Product Formation Kinetics Based on Molecular 424 7.5.4 Product Formation Kinetics by Filamentous Organisms 432 7.5.4 Product Formation Kinetics by Filamentous Organisms 432 7.5.4 Product Formation Kinetics of Cells and Spores 441 7.6 Segregated Kinetic Models of Growth and Product Formation 438 7
7.3 Transient Growth Kinetics 394 7.3.1 Growth-Cycle Phases for Batch Cultivation 394 7.3.2 Unstructured Batch Growth Models 403 7.3.3 Growth of Filamentous Organisms 405 7.4 Structured Kinetic Models 408 7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 409 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.5 Product Formation Kinetics 421 7.5.1 Unstructured Models 421 7.5.2 Chemically Stuctured Product Formation for a Simple Batch Fermentation 8 7.5.2 Chemically Stuctured Product Formation Kinetics Models 426 7.5.3 Product Formation Kinetics Based on Molecular 432 Mechanisms: Genetically Structured Models 429 432 7.5.4 Product Formation Kinetics by Filamentous Organisms 432 7.5.4 Product Formation Kinetics by Filamentous Organisms 432 7.5.4 Product Formation Kinetics of Cells and Spores 441 7.6 Segregated Kinetic Models of Growth and Product Formation 438
7.3.1 Growth Cycle Phases for Batch Cultivation 394 7.3.2 Unstructured Batch Growth Models 403 7.3.3 Growth of Filamentous Organisms 405 7.4 Structured Kinetic Models 409 7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 409 7.4.3 Modeling Cell Growth as an Optimum Process 413 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.5 Product Formation Kinetics 421 7.5.1 Unstructured Models 421 Example 7.1: Sequential Parameter Estimation for a Simple Batch Fermentation 424 7.5.2 Chemically Structured Product Formation Kinetics Models 426 7.5.3 Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models 429 7.5.4 Product Formation Kinetics by Filamentous Organisms 432 7.6 Segregated Kinetic Models of Growth and Product Formation 438 7.6 Segregated Kinetic Models of Cells and Spores 441 7.8 Concluding Remarks 445 Problems 446 454 <
7.3.2 Unstructured Batch Growth Models 403 7.3.3 Growth of Filamentous Organisms 405 7.4 Structured Kinetic Models 408 7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 413 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.4.4 Metabolic Models 421 7.4.5 Product Formation Kinetics 421 7.4.6 Product Formation Kinetics 421 7.5.1 Unstructured Models 421 7.5.2 Chemically Stuctured Product Formation Kinetics Models 426 7.5.2 Chemically Structured Product Formation Kinetics Models 426 7.5.3 Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models 429 7.5.4 Product Formation Kinetics by Filamentous Organisms 432 <i>Example 7.2: A Morphologically Structured Kinetic Model for</i> <i>Cephalosporin C Production</i> 434 7.6 Segregated Kinetic Models of Growth and Product Formation 438 7.7 Thermal-Death Kinetics of Cells and Spores 441 7.8 Concluding Remarks 445
7.3.3Growth of Filamentous Organisms4037.3.3Growth of Filamentous Organisms4057.4Structured Kinetic Models4087.4.1Compartmental Models4097.4.2Metabolic Models4137.4.3Modeling Cell Growth as an Optimum Process4187.5Product Formation Kinetics4217.5.1Unstructured Models421 <i>Example 7.1:</i> Sequential Parameter Estimation for a Simple Batch Fermentation4247.5.2Chemically Stuctured Product Formation Kinetics Models4267.5.3Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms <i>Example 7.2:</i> A Morphologically Structured Kinetic Model for Cephalosporin C Product Formation4347.6Segregated Kinetic Models of Growth and Product Formation 4384347.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks 445445Problems References446
7.4Structured Kinetic Models4037.4Structured Kinetic Models4097.4.1Compartmental Models4097.4.2Metabolic Models4137.4.3Modeling Cell Growth as an Optimum Process4187.5Product Formation Kinetics4217.5.1Unstructured Models421Example 7.1:Sequential Parameter Estimation for a Simple Batch Fermentation4247.5.2Chemically Stuctured Product Formation Kinetics Models4267.5.3Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms432Example 7.2:A Morphologically Structured Kinetic Model for Cephalosporin C Production4347.6Segregated Kinetic Models of Growth and Product Formation4387.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks445Problems445Arobit Structures445
7.4.1 Compartmental Models 409 7.4.2 Metabolic Models 413 7.4.3 Modeling Cell Growth as an Optimum Process 418 7.5 Product Formation Kinetics 421 7.5.1 Unstructured Models 421 <i>Example 7.1: Sequential Parameter Estimation for a Simple Batch Fermentation</i> 424 7.5.2 Chemically Stuctured Product Formation Kinetics Models 426 7.5.3 Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models 429 7.5.4 Product Formation Kinetics by Filamentous Organisms 432 <i>Example 7.2: A Morphologically Structured Kinetic Model for Cephalosporin C Production</i> 434 7.6 Segregated Kinetic Models of Growth and Product Formation 438 7.7 Thermal-Death Kinetics of Cells and Spores 441 7.8 Concluding Remarks 445 Problems 446 446
7.4.2Metabolic Models4097.4.3Modeling Cell Growth as an Optimum Process4187.4.3Modeling Cell Growth as an Optimum Process4187.5Product Formation Kinetics4217.5.1Unstructured Models421Example 7.1:Sequential Parameter Estimation for a Simple Batch Fermentation4247.5.2Chemically Stuctured Product Formation Kinetics Models4267.5.3Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms Example 7.2:4347.6Segregated Kinetic Models of Growth and Product Formation4387.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks445Problems446446References454
7.4.3Modeling Cell Growth as an Optimum Process4187.5Product Formation Kinetics4217.5.1Unstructured Models421Example 7.1:Sequential Parameter Estimation for a Simple Batch Fermentation4247.5.2Chemically Stuctured Product Formation Kinetics Models4267.5.3Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms Example 7.2:4347.6Segregated Kinetic Models of Growth and Product Formation4347.6Segregated Kinetic Models of Cells and Spores4417.8Concluding Remarks445Problems446References454
7.5 Product Formation Kinetics 421 7.5.1 Unstructured Models 421 <i>Example 7.1: Sequential Parameter Estimation for a Simple Batch Fermentation</i> 424 7.5.2 Chemically Stuctured Product Formation Kinetics Models 426 7.5.3 Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models 429 7.5.4 Product Formation Kinetics by Filamentous Organisms 432 <i>Example 7.2: A Morphologically Structured Kinetic Model for Cephalosporin C Production</i> 434 7.6 Segregated Kinetic Models of Growth and Product Formation 438 7.7 Thermal-Death Kinetics of Cells and Spores 441 7.8 Concluding Remarks 445 Problems 446 446
7.5.1Unstructured Models421Example 7.1:Sequential Parameter Estimation for a Simple Batch Fermentation4247.5.2Chemically Stuctured Product Formation Kinetics Models4267.5.3Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms Example 7.2:4347.6Segregated Kinetic Models of Growth and Product Formation4347.6Segregated Kinetic Models of Cells and Spores4417.8Concluding Remarks445Problems446References454
Example 7.1: Sequential Parameter Estimation for a Simple Batch Fermentation4247.5.2Chemically Stuctured Product Formation Kinetics Models4267.5.3Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms <i>Example 7.2: A Morphologically Structured Kinetic Model for</i> <i>Cephalosporin C Production</i> 4347.6Segregated Kinetic Models of Growth and Product Formation 4384387.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks 446 References454
Batch Fermentation4247.5.2Chemically Stuctured Product Formation Kinetics Models4267.5.3Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms Example 7.2: A Morphologically Structured Kinetic Model for Cephalosporin C Production4347.6Segregated Kinetic Models of Growth and Product Formation4387.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks Problems446References454
7.5.2Chemically Stuctured Product Formation Kinetics Models4267.5.3Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms432Example 7.2: A Morphologically Structured Kinetic Model for Cephalosporin C Production4347.6Segregated Kinetic Models of Growth and Product Formation4387.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks445Problems446References454
7.5.3Product Formation Kinetics Based on Molecular Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms <i>Example 7.2: A Morphologically Structured Kinetic Model for</i> <i>Cephalosporin C Production</i> 4347.6Segregated Kinetic Models of Growth and Product Formation Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks Problems Keferences454
Mechanisms: Genetically Structured Models4297.5.4Product Formation Kinetics by Filamentous Organisms432Example 7.2: A Morphologically Structured Kinetic Model for Cephalosporin C Production4347.6Segregated Kinetic Models of Growth and Product Formation4387.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks445Problems446References454
7.5.4Product Formation Kinetics by Filamentous Organisms Example 7.2: A Morphologically Structured Kinetic Model for Cephalosporin C Production4327.6Segregated Kinetic Models of Growth and Product Formation4387.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks445Problems446References454
Example 7.2: A Morphologically Structured Kinetic Model for Cephalosporin C Production4347.6Segregated Kinetic Models of Growth and Product Formation7.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding RemarksProblems446References454
Cephalosporin C Production4347.6Segregated Kinetic Models of Growth and Product Formation4387.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks445Problems446References454
7.6Segregated Kinetic Models of Growth and Product Formation4387.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks445Problems446References454
7.7Thermal-Death Kinetics of Cells and Spores4417.8Concluding Remarks445Problems446References454
7.8Concluding Remarks445Problems446References454
Problems446References454
References 454
Chapter 8 Transport Phenomena in Bioprocess Systems 457
8.1 Gas-Liquid Mass Transfer in Collular Systems 450
8.1 Basic Mass Transfer Concente 459
8.1.2 Rates of Metabolic Oxygen Utilization 467
82 Determination of Oxygen Transfer Pates 47
8.21 Measurement of $k a'$ Using Gas Liquid Protons 470
83 Mass Transfer for Freely Rising or Falling Bodies 473
831 Mass-Transfer Coefficients for Rubbles and Rubble Surgement 473
8.3.2 Estimation of Dispersed Phase Interfacial Area and Haldun 475
Example 8.1: Holdup Correlations 482
8.4 Forced Convection Mass Transfer 484
8.4.1 General Concepts and Key Dimensionless Groups 484

	8.4.2 Correlations for Mass-Transfer Coefficients and Interfacial	
	Area	
	Example 8.2: Correlations for Maximum (D_c) or Sauter Mean (D_c) Public or Director	40.7
<u>è</u> 5	(D _{sm}) Bubble of Droplet Diameters	487
and Agitated Vessels		400
86	Mass Transfer Across Free Surfaces	400
87	Other Factors Affecting k.d'	493
	8.7.1 Estimation of Diffusivities	470
	8.7.2 Ionic Strength	490
	8.7.3 Surface Active Agents	500
8.8	Non-Newtonian Fluids	501
	8.8.1 Models and Parameters for Non-Newtonian Fluids	501
	8.8.2 Suspensions	502
	8.8.3 Macromolecular Solutions	504
	8.8.4 Power Consumption and Mass Transfer in Non-Newtonian	
	Fluids	505
8.9	Scaling of Mass-Transfer Equipment	508
8.10	Heat Transfer	512
	8.10.1 Heat-Transfer Correlations	517
	Example 8.3: Heat Transfer Correlations	521
8.11	Sterilization of Gases and Liquids by Filtration	
Problems		
	Keterences	
Chapter 9	Design and Analysis of Biological Reactors	533
Chapter 9 9.1	Design and Analysis of Biological Reactors Ideal Bioreactors	533 535
Chapter 9 9.1	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors	533 535
Chapter 9 9.1	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs	533 535
Chapter 9 9.1	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth	533 535
Chapter 9 9.1	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor	533 535
Chapter 9 9.1 9.2	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics	533 535
Chapter 9 9.1 9.2	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models	533 535
Chapter 9 9.1 9.2	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability	533 535
Chapter 9 9.1 9.2 9.3	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing	533 535
Chapter 9 9.1 9.2 9.3	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.2.2 Desidence Time Distributions	533 535
Chapter 9 9.1 9.2 9.3	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.4 Models for Nurideal Reseators	533 535
Chapter 9 9.1 9.2 9.3	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.3 Models for Nonideal Reactors 9.3.4 Mixing Bioreaction Interactions	533 535
Chapter 9 9.1 9.2 9.3	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.3 Models for Nonideal Reactors 9.3.4 Mixing-Bioreaction Interactions Example 9 1: Reactor Modeling and Optimization for	533 535
Chapter 9 9.1 9.2 9.3	Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.3 Models for Nonideal Reactors 9.3.4 Mixing-Bioreaction Interactions Example 9.1: Reactor Modeling and Optimization for Production of re-Galactorsidase by a Monascus sp	533 535
Chapter 9 9.1 9.2 9.3	 Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.3 Models for Nonideal Reactors 9.3.4 Mixing-Bioreaction Interactions Example 9.1: Reactor Modeling and Optimization for Production of α-Galactosidase by a Monascus sp. Mold 	533 535
Chapter 9 9.1 9.2 9.3 9.3	 Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.3 Models for Nonideal Reactors 9.3.4 Mixing-Bioreaction Interactions Example 9.1: Reactor Modeling and Optimization for Production of α-Galactosidase by a Monascus sp. Mold 	533 535
Chapter 9 9.1 9.2 9.3 9.4	 Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.3 Models for Nonideal Reactors 9.3.4 Mixing-Bioreaction Interactions Example 9.1: Reactor Modeling and Optimization for Production of α-Galactosidase by a Monascus sp. Mold Sterilization Reactors 9.4.1 Batch Sterilization 	533 535
Chapter 9 9.1 9.2 9.3 9.3	 Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.3 Models for Nonideal Reactors 9.3.4 Mixing-Bioreaction Interactions Example 9.1: Reactor Modeling and Optimization for Production of α-Galactosidase by a Monascus sp. Mold Sterilization Reactors 9.4.1 Batch Sterilization 	533 535
Chapter 9 9.1 9.2 9.3 9.3 9.4 9.4	 Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.3 Models for Nonideal Reactors 9.3.4 Mixing-Bioreaction Interactions <i>Example 9.1: Reactor Modeling and Optimization for</i> <i>Production of</i> α-Galactosidase by a Monascus sp. <i>Mold</i> Sterilization Reactors 9.4.1 Batch Sterilization 9.4.2 Continuous Sterilization Immobilized Biocatalysts 	533 535
Chapter 9 9.1 9.2 9.3 9.3 9.4 9.4	 Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.3 Models for Nonideal Reactors 9.3.4 Mixing-Bioreaction Interactions <i>Example 9.1: Reactor Modeling and Optimization for</i> <i>Production of α-Galactosidase by a</i> Monascus <i>sp.</i> <i>Mold</i> Sterilization Reactors 9.4.1 Batch Sterilization 9.4.2 Continuous Sterilization Immobilized Biocatalysts 9.5.1 Formulation and Characterization of Immobilized Cell 	533 535
Chapter 9 9.1 9.2 9.3 9.3 9.4 9.4	 Design and Analysis of Biological Reactors Ideal Bioreactors 9.1.1 Fed-Batch Reactors 9.1.2 Enzyme-Catalyzed Reactions in CSTRs 9.1.3 CSTR Reactors with Recycle and Wall Growth 9.1.4 The Ideal Plug-Flow Tubular Reactor Reactor Dynamics 9.2.1 Dynamic Models 9.2.2 Stability Reactors with Nonideal Mixing 9.3.1 Mixing Times in Agitated Tanks 9.3.2 Residence Time Distributions 9.3.3 Models for Nonideal Reactors 9.3.4 Mixing-Bioreaction Interactions <i>Example 9.1: Reactor Modeling and Optimization for</i> <i>Production of α-Galactosidase by a</i> Monascus <i>sp.</i> <i>Mold</i> Sterilization Reactors 9.4.1 Batch Sterilization 9.4.2 Continuous Sterilization Immobilized Biocatalysts 9.5.1 Formulation and Characterization of Immobilized Cell Biocatalysts 	533 535

9.6	Multiphase Bioreactors	606
	9.6.1 Conversion of Heterogeneous Substrates	607
	Example 9.2: Agitated-CSTR Design for a Liquid–Hydrocarbon	
	Fermentation	607
	9.6.2 Packed-Bed Reactors	609
	9.6.3 Bubble-Column Bioreactors	610
	9.6.4 Fluidized-Bed Bioreactors	614
	9.6.5 Trickle-Bed Reactors	617
9.7	Fermentation Technology	620
	9.7.1 Medium Formulation	620
	9.7.2 Design and Operation of a Typical Aseptic, Aerobic	
	Fermentation Process	622
	9.7.3 Alternate Bioreactor Configurations	626
9.8	Animal and Plant Cell Reactor Technology	630
	9.8.1 Environmental Requirements for Animal Cell Cultivation	631
	9.8.2 Reactors for Large-Scale Production Using Animal Cells	633
0.0	9.8.3 Plant Cell Cultivation	641
9.9	Drahloma	643
	Problems	644
	Kelerences	000
Chapter 10	Instrumentation and Control	658
10.1	Physical and Chemical Sensors for the Medium	
	and Gases	658
	10.1.1 Sensors of the Physical Environment	659
	10.1.2 Medium Chemical Sensors	661
	Example 10.1: Electrochemical Determination of k ₁ a	664
	10.1.3 Gas Analysis	669
10.2	On-Line Sensors for Cell Properties	670
10.3	Off-Line Analytical Methods	674
	10.3.1 Measurements of Medium Properties	674
	10.3.2 Analysis of Cell Population Composition	676
10.4	Computers and Interfaces	684
	10.4.1 Elements of Digital Computers	685
	10.4.2 Computer Interfaces and Peripheral Devices	687
10.5	10.4.3 Software Systems	691
10.5	Data Analysis	693
	10.5.1 Data Smoothing and Interpolation	693
10.6	10.5.2 State and Parameter Estimation	695
10.0	Process Control	698
	10.6.1 Direct Regulatory Control	698
10.7	Advanced Control Strategies	700
10.7	10.7.1 Programmed Batch Bioreastion	703
	10.7.1 Design and Operating Strategies for Datab Planta	704
	10.7.2 Continuous Process Control	712
10.8	Concluding Remarks	713
20.0	Problems	718
	References	722

Chapter 11 Product Recovery Operations

- 11.1 Recovery of Particulates: Cells and Solid Particles
 - 11.1.1 Filtration
 - 11.1.2 Centrifugation
 - 11.1.3 Sedimentation
 - 11.1.4 Emerging Technologies for Cell Recovery
 - 11.1.5 Summary
 - **Product Isolation**
 - 11.2.1 Extraction
 - 11.2.1.1 Solvent Extraction
 - 11.2.1.2 Extraction using Aqueous Two-Phase Systems
 - 11.2.2 Sorption

Precipitation

Example 11.1: Procedures for Isolation of Enzymes from Isolated Cells

- 11.3.1 Kinetics of Precipitate Formation
- 11.4 Chromatography and Fixed-Bed Adsorption: Batch Processing with Selective Adsorbates

Membrane Separations

- 11.5.1 Reverse Osmosis
- 11.5.2 Ultrafiltration
- 11.6 Electrophoresis
- 11.7 Combined Operations
 - 11.7.1 Immobilization
 - 11.7.2 Whole Broth Processing
 - 11.7.3 Mass Recycle
- 11.8 Product Recovery Trains
 - 11.8.1 Commercial Enzymes
 - 11.8.2 Intracellular Foreign Proteins from Recombinant E. coli
 - 11.8.3 Polysaccharide and Biogum Recovery
 - 11.8.4 Antibiotics
 - 11.8.5 Organic Acids
 - 11.8.6 Ethanol
 - 11.8.7 Single-Cell Protein
- 11.9 Summary
 - Problems

References

Chapter 12 Bioprocess Economics

- 12.1 Process Economics
- 12.2 Bioproduct Regulation
- 12.3 General Fermentation Process Economics
- 12.4 A Complete Example
- 12.5 Fine Chemicals
 - 12.5.1 Enzymes
 - 12.5.2 Proteins via Recombinant DNA
 - 12.5.3 Antibiotics
 - 12.5.4 Vitamins, Alkaloids, Nucleosides, Steroids
 - 12.5.5 Monoclonal Antibodies (MAb)

12.6	Bulk Oxygenates	827
	12.6.1 Brewing and Wine Making	830
	12.6.2 Fuel Alcohol Production	
	12.6.3 Organic and Amino Acid Manufacture	835
12.7	Single-Cell Protein (SCP)	839
12.8	Anaerobic Methane Production	847
12.9	Overview	849
	Problems	849
	References	852
Chapter 13	Analysis of Multiple Interacting Microbial Populations	854
13.1	Neutralism Mutualism Commensalism and Amensalism	854
13.1	Classification of Interactions Retween Two Species	860
1.5.2	Example 13.1. Two Species Dynamics near a Steady State	862
13.3	Competition: Survival of the Fittest	864
13.5	13.3.1 Volterra's Analysis of Competition	865
	13.3.2 Competition and Selection in a Chemostat	867
	Example 13.2. Competitive Growth in Unstable Recombinant	007
	Cultures	870
13.4	Predation and Parasitism	871
1.5.4	1341 The Lotka-Volterra Model of Predator-Prev Oscillations	872
	1342 A Multispecies Extension of the Lotka-Volterra Model	876
	12.4.2 Other One Dedates One Deer Medale	070

13.4.3 Other One-Predator-One-Prey Models	876
Example 13.3: Model Discrimination and Development via Stability	
Analysis	879
Effects of the Number of Species and Their Web of Interactions	883

13.5	Effects	of the Number of Species and Their Web of Interactions	883
	13.5.1	Trophic Levels, Food Chains, and Food Webs: Definitions	
		and an Example	883
	13.5.2	Population Dynamics in Models of Mass-Action Form	885
	Example 13.4: An Application of the Mass-Action Theory		888
	13.5.3	Qualitative Stability	888
	Example	le 13.5: Qualitative Stability of a Simple Food Web	889
	13.5.4	Stability of Large, Randomly Constructed Food Webs	890
	13.5.5	Bifurcation and Complicated Dynamics	892
13.6	Spatial	Patterns	892

13.6	Spatial Patterns	892
	Problems	896
	References	900

Chapter 14	Mixed Microbial Populations in Applications and Natural Systems	903
14.1	Uses of Well-Defined Mixed Populations Example 14.1: Enhanced Growth of Methane-Utilizing Pseudomonas sp. due to Mutualistic Interactions	903
14.2	in a Chemostat Spoilage and Product Manufacture by Spontaneous Mixed	907
14.2	Cultures	911

- 14.3 Microbial Participation in the Natural Cycles of Matter,
 - 14.3.1 Overall Cycles of the Elements of Life
 - 14.3.2 Interrelationships of Microorganisms in the Soil and Other Natural Ecosystems
- 14.4 Biological Wastewater Treatment
 - 14.4.1 Wastewater Characteristics
 - 14.4.2 The Activated-Sludge Process
 - 14.4.3 Design and Modeling of Activated-Sludge Processes
 - 14.4.4 Aerobic Digestion
 - 14.4.5 Nitrification

Example 14.2: Nitrification Design

- 14.4.6 Secondary Treatment Using a Trickling Biological Filter
- 14.4.7 Anaerobic Digestion
- 14.4.8 Mathematical Modeling of Anaerobic-Digester Dynamics
- Example 14.3: Simulation Studies of Control Strategies for Anaerobic Digesters
- 14.4.9 Anaerobic Denitrification
- 14.4.10 Phosphate Removal
- Problems
- References

Index