Introduction

Novel information on explosive properties	1 2
Sensitivity of explosives to impact	11
Action of ultrasonic waves and laser pulse	16
Action of irradiation	16
Influence of high temperature	17
Increasing the strength of explosives by adding metals	17
References	18
Chapter 1. Nitration and nitrating agents	21
Nitric acid	21
Nitric and sulphuric acid	24
Effectsof adding salts on nitration in sulphuric acid	25
Nitric acid and trifluoromethane sulphonic acid	25
Nitric acid and hydrofluoric acid	26
Nitric acid and phosphoric acid	26
Nitric acid and acetic anhydride	26
Nitric acid with cerium ammonium nitrate or tallium nitrate	27
Nitronium cation (NO_2^+) and its salts	27
Dinitrogen pentoxide	29
Dinitrogen tetroxide and nitrogen dioxide	31
Dinitrogen tetroxide, nitric acid	35
Friedel-Crafts nitrating agents	35
Solid superacid catalysts	36
Alkyl nitrates and boron trifluoride	36
Nitric acid and mercury salts	37
Inorganic nitrate saits and trifluoroacetic acid	37
Nitrous acid	39
Nitrosyl chloride	30
Alinkatia nitra compoundo	41
Nitar amin as	42
Nitroamines Deferences	42
Kelelences	2018
Chapter 2. Nitration of aromatic systems	46

Influence of substituents on nitration	48
Ipso-nitration	50
Aromatic radical cation	55
Reversibility of aromatic nitration	55
5	

CON	FENTS
-----	-------

1

Nitration under the influence of gamma radiation	57
Indirect methods of introducing a nitro group	58
Substitution of sulphonic group	58
Substitution of diazo group	59.
Substitution of halogen	59
Substitution of t-butyl group	59
Introducing the nitro group by oxidation	60
Oxidation of primary amino group	60
Oxidation of oximes	60
Diffusion control in nitration	61
Influence of a positively charged substituent	63
Side reactions	63
References	64

Chapter 3. Structures and physico-chemical properties of	
nitro compounds	68
Electronic spectra of the nitro groups	69
Solvent effect	73
Infra-red and raman spectroscopy	74
Nuclear magnetic resonance of nitro compounds	77
Proton magnetic resonance	77
Nitrogen magnetic resonance	78
Electron spin resonance	80
Micro-wave spectroscopy	80
Magnetic and electric birefringance	80
Optical rotatory dispersion	81
Hydrogen bond with the nitro groups	81
Charge-transfer complexes (CT-complexes) or electron-donor-acceptor	
complexes (EDA-Complexes)	83
X-Ray structure	87
Thermochemistry	88
Mass spectrography	88
Electrochemical Properties	90
Galvanic cells	90
Biological activity of nitro compounds	90
References	91
Chapter 4. Reactivity of aromatic nitro compounds	96

Substitution (heterolytic and homolytic)	96
Electrophilic substitution	97
Nucleophilic addition and substitution	97
Nucleophilic displacement of nitro groups	98
Jackson-Meisenheimer reaction and complexes	98
Practical significance and application of Jackson–Meisenheimer reaction	101
Reaction potential map (RPM)	102
Mycellar nucleophilic reactions	102
Janovsky reaction	103
Action of bases in nucleophilic reactions of nitro compounds	104
Action of Grignard reagent on nitro compounds	107
Reaction of aromatic nitro compounds with diazomethane	109
-	

х

CONTENTS	xi
Mechanism of Richter reaction	109
Nucleophilic substitution in gas phase	110
Reactions of radical ions	110
Radical anions of nitro compounds	110
Free radical reactions	112
Action of aromatic nitro compounds on polymerization	115
Reduction of aromatic nitro compounds	115
Formation of nitroso compounds	115
Reduction of aromatic ring	116
Diazotization of amino nitro compounds	118
1,3-Cycloaddition of nitro compounds	119
Thermal stability of aromatic nitro compounds	120
Free radicals	121
Furoxanes	122
References	122
Chapter 5 Photochemistry of nitro compounds	120
Chapter 5. 1 hotochemistry of mit o compounds	129
Aliphatic and alicyclic nitro compounds	132
Photoconductivity of nitro compounds	133
Photolysis	134
References	135
Chapter 6. Nitro derivatives of benzene, toluene and other aromatics	138
Nitration of benzene to nitrobenzene	138
Nitrobenzene	139
m-Dinitrobenzene	139
Electrochemical properties	140
Isomeric dinitrobenzenes	140
sym-Trinitrobenzene	140
1,2,3,5-Tetranitrobenzene	141
1,2,4,5-Tetranitrobenzene	142
1,2,3,4-Tetranitrobenzene	142
Pentanitrobenzene	142
Hexanitrobenzene (HNB)	143
Other high nitrated derivatives of benzene obtained by the method of Nielsen	143
Nitro derivatives of toluene	144
Nitration of toluene to nitrotoluenes	144
Mononitrotoluenes	145
Industrial methods of mono-nitration of benzene and toluene	145
Removal of phenolic by-products	146
Periodic nitration	146
Continuous nitration	146
Soviet method (according to Chekalin, Passet and Ioffe)	147
Bofors-Nobel-Chematur method of nitrating benzene and toluene to	
mononitro products	150
Dinitrotoluenes	151
Physical (including thermochemical and explosive) properties	152
Formation of dinitrotoluenes from mononitrotoluenes	153
Industrial methods of dinitration of benzene and toluene	154
Modernized pilot-plant and industrial production of DNT	154
Low temperature nitration of toluene to DNT	154
Bofors-Nobel-Chematur method of manufacture of DNT	156

CONT	FENTS
------	-------

ł

Biazzi S.A., Vevey continuous method	157
Trinitrotoluene	160
Physical (including thermochemical and explosive) properties	160
Chemical properties of 2,4,6-trinitrotoluene	164
Reaction with sodium sulphite	164
Oxidation of 2.4.6-trinitrotoluene	165
Reduction of 2,4,6-trinitrotoluene	165
Methylation of 2,4,6-trinitrotoluene	166
Unsymmetrical isomers of trinitrotoluene and by-products of nitration of toluene Tetranitromethane White compound	168 169
Impurities of TNT	171
Sulphitation of crude TNT ('sellite' process)	172
By-products formed in the course of purification of TNT with sodium sulphite	173
Utilization of dinitrosulphonic acids formed in sellite process	173
Pentanitrotoluene	175
TNT Manufacture	176
Bofors-Chematur continuous method	177
Low temperature process for TNT manufacture	178
One-stage Nitration of toluene	181
Two-stage process of nitration	182
Three-stage process	182
Direct nitration process	182
Purification of crude TNT	185
Soda-ash process	186
Ammoniacal sellite process	186
Alkaline sellite method	187
Safety of manufacture and handling of aromatic nitro compounds, particularly of benzene and toluene	187
Other nitroaromatics	190
Nitro derivatives of hydrocarbons	190
Nitro derivatives of halogenohydrocarbons	191
Nitrophenols	191
Picric acid	191
Salts of picric acid	192
2,4-Dinitroresorcinol	192
Purification	193
Styphnic acid	193
Tetranitrodian	193
Bioric acid ethers	194
Hexanitrodiphenylamine (hexyl)	195
Picramic acid	195
Other aromatic nitro compounds with amino groups	195
References	195
Appendix 1	199
Derivatives of halogeno-benzene Appendix 2 Analysis of nitrating acids	199 201 201 201
Appendix 5	201
Nitro derivatives of benzene	202
Nitro derivatives of diphenyl	205

xii

CONTENTS	xiii
Nitro derivatives of bibenzyl and stilbene	206
Nitro derivatives of bibenzyl	206
Nitro derivatives of stilbene	208
Nitro derivatives of aromatic aza pentalenes	211
Nona	213
Potential heat resistant explosives	213
Resistance to irradiation	215
References	215
Appendix	217
Chapter 8. Aliphatic nitro compounds	218
Mononitro alkanes	218
Other methods of introducing the nitro group into saturated compounds	219
Oxidation of amines	220
Reaction of alkyl halides with sodium nitrite	220
Nitromercuration of alkenes	221
Formation of nitroalkanes from nitrate esters	221
Chemical properties of nitroalkanes	221
Nitronic acids	221
Polar solvents favour the aci-form	221
Activating influence of the nitro group	222
Nitromethane	224
Nitroethane, 1-nitropropane and 2-nitropropane	226
Aryinitroaikanes	226
Nilrocycloalkalles	228
Industrial methods of nitrating alkanes	229
German method of nitration of lower alkanes	229
Method of Commercial Solvents Corporation Inc	230
Distillation	231
Hazards of the nitration of alkanes	233
1.2-Dinitroethane	236
2.2-Dinitropropane	236
Nitroalkenes	236
Methods of preparation of nitroalkenes	236
Recent reactions of formation of nitroalkenes	238
Chemical properties of nitroalkanes	239
Addition reactions	240
Isomerization	240
'Reduction of the double bond	241
Polymerization	241
Nitroacetylenes	242
Polynitro aliphatic compounds	242
Nitration of hydrocarbons	242
Substitution of halogen	243
Electrolytic methods	244
Addition reaction	244
Nichael addition	244
Ovidative dimerization	245
• w_Dinitroalkanes	245
gem-Dinitroalkanes	245
Trinitromethane (nitroform) derivatives	240
Properties of nitroform	243
Manufacture of nitroform	248

Tetranitromethane (TNM)	251
Physical and physico-chemical properties of TNM	251
Chemical properties	252
Nucleophilic substitution	253
Nitrosation of tertiary amines	253
gem-Dinitromethylation	253
Nitration	254
Radical reactions	255
Ionic polymerization	255
Metalorganic compounds	255
Explosive properties	255
Toxicity	256
Preparation of TNM	256
Hexanitroethane (HNE)	256
Nitrocarboxylic acids	257
Nitrodiazomethanes	258
Nitro derivatives of urea	259
N,N-bis(β,β,β)-trinitroethyl urea	259
Nitroso compounds	259
Nitro-nitroso alkanes ('Pseudonitroles')	259
'Hexanitrozobenzene'	260
Nitroenamines	260
References	261
Appendix	268
References	269

Chapter 9. Difluoroaminocompounds

270

281

0.01

.

Direct fluorination of non-aromatic compounds	270
Direct fluoringtion of NUL and NH groups in alighting compounds	271
Difection M_2 and M_2 and M_3 in an phate compounds	271
Other non-prometic difluoroamines	272
Elucrination of nitroaromatic aminos	273
1 Diffuoroamino 2 A-dinitrobenzene	273
Other difluoramino nitrogramatics	275
Fluoringtion through the addition of tetrafluorohydrazine	275
The	275
Reactivity of tetraflyorobydrazine	276
Explosive properties of diffuoroaminoalkanes and alkenes	277
Theoretical aspects of properties of NF, compounds	278
Thermochemistry	279
References	279

Chapter 10. Esters

Nitrate esters (0-nitro compounds)	281
Structure	281
Dipole moments	281
Spectroscopy	282
Nuclear magnetic resonance	284
Electron attracting properties of nitrate esters and charge-transfer complexes	284
Hydrolysisof nitrate esters	287
Reduction of nitrate esters	289
Conversion of nitrate esters into nitroalkanes	289

xiv

XV

Formation of nitrate esters	289
Gas-chromatography of alkyl nitrates	292
Alkenes as asource of nitrate esters	292
Nitrate esters as explosives	293
Biological action of nitrate esters	295
Glycerol trinitrate (nitroglycerine)	295
Setting point	295
Vapour pressure	295
Absorption spectra	296
Chemical properties and stability	296
Sensitivity to impact	298
Burning of nitroglycerine	299
Explosion and Detonation of nitroglycerine	299
Glycerol dinitrates ('dinitroglycerine') and derivatives	300
Glycerol-nitrolactate dinitrate	300
Glycerol 2 4 -dinitrophenylether and trinitrophenylether dinitrates	301
Hexanitrodinhenvlolvcerol mononitrate	301
Mixed esters of glycerol	302
Glycol nitrates	302
Ethylene glycol mononitrate	302
Ethylene glycol dipitrate	302
Disthylene glycol dinitrate	302
Tristhylene glycol dinitrate	303
Duting 2 digl 1 4 digitizate	303
Butine-2-0101-1,4 010107ate	304
Nitrate esters of mononydroxync alconois Mashvil mitrate	304
Ethyl mirate	305
Ethyl nitrate	305
in-riopyi initate	300
Iso-Propyi mirate	300
Polynydroxynic alconol esters	307
Butane-1,2,3-triol triminate	307
Erythel	307
Pentitol pentanitrates	307
D-Mannitol pentanitrate	307
D-Mannitol hexanitrate	308
Dulcitol D- or L-galactitol hexanitrate and D-sorbitol hexanitrate	309
Pentaerythritol tetranitrate (PETN)	310
Thermodynamic properties and thermal decomposition of PETN	311
Explosive properties	313
Nitration of pentaerythritol	314
Mixed pentaerythritol and glycerol esters	316
Methodsof preparation of PETriN and PEDN	317
Nitrite esters (0-Nitroso Compounds)	318
Esters of oxy-acids of chlorine	319
Geminal diperchlorates	319
References	319
Appendix	323
N-Oxides	323

Chapter 11. Production of nitrate esters	324
Nitroglycerine (NG)	324
Hercules tubular process	324
Biazzi process	326
Control of the nitration	327

328
328
328
329
330
331
332
333
333
336
338

Chapter 12. Carbohydrate nitrates

339

.

Cellulose and cellulose nitrates (nitrocellulose)	339
Cellulose for nitration	339
Structure of cellulose polymer and determination of molecular weight	340
Pyrolysis of nitrocellulose	341
Thermochemical properties of nitrocellulose	341
Mixed esters: nitrates and sulphates	342
Stabilization of nitrocallulose	343
Knecht compound	345
Manufacture of mitrocolluloce	345
Somi continuous method of Pofers Nobel Chemetur	345
Drying of nitrocellulose	348
Safety in the manufacture of nitrocallulose	349
Starch nitrates (nitrostarch)	349
Nitrates of various carbohydrates	350
Polygingunitrate	351
Nitro derivativas of lignin	351
Pafarancas	351
INTERCE STATES	

Chapter 13. N-Nitrocompounds (N-nitraminesand N-nitramides)	
Structure and chemical properties	354
Preparation of nitramines	361
Formation of dinitramines from nitroguanidine	361
N-Nitroenamines	361
Aliphatic nitramines and nitramides	361
Ethylene dinitramine (EDNA, Haleite)	362
Physical and chemical properties	363
Explosive properties	364
Nitroguanidine	365
Reactions of nitroguanidine	366
Specification according to Meyer	367
Nitroaminoguanidine	367
Nitrodiethanolamine dinitrate	368
Preparation	368
Dinitrodi-(B-hydroxyethyl)-oxamide dinitrate (NENO)	369
Aromatic nitramines	369
Tetryl	370
Heterocyclic nitramines	372
Cyclonite (Hexogen, RDX)	372

xvi

xvii

Structure	372
Spectroscopy of cyclonite	373
Chemical properties	373
Thermal decomposition	374
Preparation of cyclonite	376
Preparation of cyclonite from hexamine dinitrate acetic anhydride	377
Explosive properties of cyclonite	378
Manufacture of cyclonite (RDX) according to Mario Biazzi S.A. (Vevey)	379
Specification for cyclonite (Hexogen)	380
Disposal of waste cyclonite	381
Toxic properties of cyclonite	381
Explosives with cyclonite as a main component	381
Octogen	382
Structure and physical properties	383
Solubility of octogen	387
Chemical properties	387
Thermal decomposition	388
Thermochemical and explosive properties	390
Preparation of octogen	391
Specification for octogen	393
Explosives with octogen as a main component	394
BSX (1,7-Diacetoxy-2,4,6-trinitro-2,4,6-triazaheptane)	395
Dingu and Sorguyl	396
N-Nitro-0-Nitro compounds	397
References	397
Appendix	402
Chapter 14. Explosive polymers	404

C-Nitro polymers	404
Nitropolystyrene and its derivatives	404
Nitroindene polymer	404
Polynitro alkanes	404
Nitroethylene polymer	404
Polyurethanes with aliphatic C- and N-nitro groups	405
Preparation	409
C-Nitro polymers from monomers with a vinyl group	411
Nitroallyl acetate polymer	411
Ethylnitroacrylate	411
Nitroethyl acrylate	412
Nitroethyl methacrylate	412
Trinitroethyl acrylate	412
Dinitropropylacrylate (DNPA)	412
Polyesters of dinitrocarboxylic acids and dinitrodiols	413
Polymer with 0-nitro groups	413
Polyvinyl nitrate (PVN)	413
Properties of PVN	413
Explosive properties	414
Preparation of polyvinyl nitrate	415
Practical use of polyvinyl nitrate	418
Modifications of polyvinyl nitrate	419
Hydrazine and difluoroamine polymers	419
N-Nitro polymers	420
Plastic bonded explosives	420
References	420

xviii	CONTENTS	
Chapter 15. Recovery of	spentacids	422
General problems of spent aci	ids from the nitration of alcohols	422
Spent acids from nitration of	of glycerine	423
Stabilization of spent acid		423
Denitration of spent acid		423
Re-use of spent acid from the	he nitration of glycerine	427
Spent acid of PETN		429
Spent acid from cyclonite (RDX) manufacture	433
Spent acid from nitrocellul	ose	435
Spent acid from TNT		435
Spent acid from mononitra	tion of toluene	435
Environmental problems of d	enitration	435
References		436
Chapter 16. Salts of nitr	ic acid and of oxy-acids of chlorine	437
Ammonium nitrate		437
Hygroscopicity of ammoni	um nitrate	439
Chemical and explosive pro	operties	440
Hydrazine nitrates	1	441
Hydrazine mononitrate		441
Hydrazine dinitrate		442
Hydrazine nitrate complex	es ('Hydrazinates')	443
Methylamine nitrate		443
Tetramethylammonium nitra	ite	443
Guanidine nitrate		444
Nitrates of aromatic amines		444
Ammonium chlorate		444

Nitrates of aromatic amines
Ammonium chlorate
Ammonium perchlorate
Crystal structure and physical properties
Thermal decomposition and burning of A P
Thermal decomposition of irradiated ammonium perchlorate
Influence of pressure on burning of A P
Density and critical diameter
Decomposition (at higher temperatures) and burning of ammonium perchlorate
with various additives
Mechanism of low-temperature decomposition of A P
Explosive properties of NH ₄ ClO ₄
Manufacture of ammonium perchlorate
Specification
Perchlorate of metals
Other perchlorate
Hydrazine perchlorate
Hydrazine diperchlorate
Salts of hydrazine perchlorate and chlorate complexes
Nitrosyl perchlorate
Hydroxylamine perchlorate
Methylamine perchlorate
Guanidine perchlorate
Nitroguanidine perchlorate
Fluoroammonium perchlorate
Nitronium perchlorate
Perchloricacid and chlorine oxides

Perchloric acid

CONTENTS	xix
Chlorine oxides References	458 458
Chapter 17. Primary explosives: initiators, initiating explosives (IE)	462
Introduction	462
Burning of IE under reduced pressure	463
Mercuric fulminate	405
Physical properties	465
Chemical properties	465
Chemical stability and behaviour at high temperature	466
Behaviour at low temperature	467
Action of light	467
Burning under reduced pressure	468
Initiating properties of mercuric fulminate	468
Other salts of fulminic acid	469
Manufacture of mercuric fulminate	469
Esters of fulminic acid	469
Hydrazoicacid, its derivatives and salts	469
Decomposition of azides	470
Heterocyclics from azides	470
Other reactions of azide anion and radical	471
Some organic azides	472
Danger of handling azides	473
Cyanic triazide	474
Ammonium azida	4/4
Annionium azuc Dhysico, chemical and explosive properties of metal azides	4/4
Ontical properties	4/5
Slow decomposition of azides	470
Fast decomposition and explosion	470
Lead azide	478
Properties of lead azide	470
Crystal structure of α - Pb (N ₂) ₂	479
Spontaneous explosions of azides	479
Sensitivity of lead azide	481
Stability and reactivity of lead azide	482
The manufacture of lead azide	482
Silver azide	484
Cadmium azide	486
Storage of azides	486
Toxicity	487
Destruction of lead azide	487
Manufacture of sodium azides	488
Sodium azide formation in liquid ammonia	490
Tetrazene (Tetracene)	490
A rotational	492
Azotetrazote	493
Fulloxane derivatives Nitro derivatives of phenols	494
Lead mononitroresorginal (LMNR)	494
Lead 2 A-dinitroresorcinate	494
Basic lead 4 6-dinitroresorcinol	495
Lead styphnate	493
Lead salts of nitronaphthols	490
Lead said of intronuphtions	49/

Complex salts	497 497
Dinitrohonzonodiozoovido (Dinitrodiazonhenol DDNP DINOL)	497
Salts of acetylene	498
Manufacture of primers	498
Peroxides	499
Propione peroxide	499
Superoxides	500
References	500
Appendix	505
Chapter 18. Black powder (gun powder)	506
Modification of black powder	508
Explosive properties	510
Hygroscopicity of black powder	511
Manufacture of black powder	511
The use of black powder	513
Pyrotechnics	513
Accidents with black powder	513
History of black powder	513
References	513
Chapter 19. Commercial (Mining) Explosives	515
Introduction	515
Principles of composition of commercial explosives	515
Oxygen halance	515
Hygrosconicity of mining explosives	517
Stability of commercial explosives	519
Physical changes	519
Chemical changes	519
Rate of detonation and critical diameter	520
"Gap test" (Transmission of detonation)	520
Gap test and temperature	522
Channel effect	522
Possible spiral way and detonation of mixed explosives	523
Deflagration of explosives in coal-mines	524
Evaluation of the strength of mining explosives	525
Safety against methane and coal-dust	527
Theory of safety against methane and coal-dust	529
Ammonium nitrate-fuel oil mixtures (AN–FO)	530
Explosive working of metals	532
Mining explosives used in various countries	532
Bulgaria	532
Germany Croot Britain	532
Great Britain	533
Italy Novel mining explosives used in Polend	535
Spain	539
Sweden	538
U S S R mining explosives	538
Permitted in sulphur mines and oil fields	542
Modern Japanese mining explosives	542

CONTENTS	xxi
Belgium Water-gel (Slurry) explosives History Cross-linking agents Surface active and emulsifying agents Oxygen carriers Aluminium Alkylamine nitrates Gas bubbles Permitted slurries Slurries with high explosives Composition of slurries with nitroglycerine based explosives Nonel detonating fuse References Appendix Methods of determining the ability of explosives to deflagrate	545 546 548 548 548 548 548 552 552 552 553 554 557 557
Chapter 20. The manufacture of commercial (mining) explosives	558
Planetary mixers Cartridging AN-FO References	558 561 562 567
Chapter 21. Liquid explosives	568
Liquid oxygen explosives (Oxyliquits, LOX) Liquid rocket propellants-propergoles Mono- and bipropellants Cryogenic and storable components Hypergolic systems Novel trends in liquid rocket fuel Oxidizers Oxygen difluoride (OF,) Nitrogen fluorides Multicomponent fuel Polymerization of hypergolic fuel Analysis References	568 568 569 570 573 574 574 574 574 575 575 576
Chapter 22. Smokeless powder	577
Stability of smokeless powder Free radicals in the change of diphenylamine Stabilizers Kinetics of decomposition Electric susceptibility of single base powder Erosiveness of smokeless powder Manufacture of powder Single base powder Double base powder Traditional double base powder Rocket double base powder	577 581 582 584 584 585 585 585 585 585 585 585

Cast propellants	587
Method of manufacture	587
Slurry-cast propellants (Plastisol propellants)	588
Screw-extrusion process	590
Classical extrusion method	596
Higher energy smokeless propellants	596
References	599

Chapter 23. Composite propellants

602

Introduction	602
Polyurethane binders	604
Polybutadiene binders with carboxylic function	605
Hydroxyterminated polybutadiene binder (HTPB)	609
Curing butadiene polymers	609
Poly (vinyl chloride) plastisol propellants (PVC)	611
High energy composite propellants with HMX (Octogene)	613
Role of ingredients on properties of composite propellants	613
Metals	614
Catalysts	614
Burning composite propellants containing ammonium perchlorate	615
Modifications of composite propellants	616
Mechanical properties	617
Manufacture of composite propellants	617
Shapes of the propellant grains	618
Explosive properties of composite propellants	618
References	620

Chapter 24. Problems of safety in the manufacture and handling of explosives

621

627

621
622
623
623
623
625
626
626

Chapter 25. Toxicity of explosives

Aromatic nitro compounds	627
m-Dinitrobenzene	627
2.4-Dinitrotoluene	627
2,4,6-Trinitrotoluene	628
Aliphatic nitro compounds	628
2-Nitropropane	628
Tetranitromethane	628
Nitrate esters	628
Methyl nitrate	628
Nitroglycerine	629

xxii

. .

Nitrocellulose	629
Nitramines	629
Nitroguanidine	629
Cyclonite (RDX, Hexogene)	629
Octogene (HMX)	629
References	630
Subject Index	631
Contents of previous volumes, I, II, III	649