Contents

Preface	xi
Author	xix

Chapter 1

Hist	orical Development of Bioethanol as a Fuel	1
1.1	Ethanol from Neolithic Times	1
1.2	Ethanol and Automobiles, from Henry Ford to Brazil	4
1.3	Ethanol as a Transportation Fuel and Additive: Economics and	
	Achievements	11
1.4	Starch as a Carbon Substrate for Bioethanol Production	17
1.5	The Promise of Lignocellulosic Biomass	26
1.6	Thermodynamic and Environmental Aspects of Ethanol as a Biofuel	33
	1.6.1 Net energy balance	33
	1.6.2 Effects on emissions of greenhouse gases and other pollutants	40
1.7	Ethanol as a First-Generation Biofuel: Present Status and	
	Future Prospects	42
Refe	rences	44

Che	mistry,	Biochemistry, and Microbiology of Lignocellulosic Biomass	49
2.1	Bioma	ass as an Energy Source: Traditional and Modern Views	49
2.2	"Slow	Combustion" — Microbial Bioenergetics	52
2.3	Structural and Industrial Chemistry of Lignocellulosic Biomass		56
	2.3.1	Lignocellulose as a chemical resource	56
	2.3.2	Physical and chemical pretreatment of	
		lignocellulosic biomass	57
	2.3.3	Biological pretreatments	63
	2.3.4	Acid hydrolysis to saccharify pretreated	
		lignocellulosic biomass	64
2.4	Cellulases: Biochemistry, Molecular Biology, and Biotechnology		
	2.4.1	Enzymology of cellulose degradation by cellulases	66
	2.4.2	Cellulases in lignocellulosic feedstock processing	70
	2.4.3	Molecular biology and biotechnology of cellulase production	71
2.5	Hemicellulases: New Horizons in Energy Biotechnology		
	2.5.1	A multiplicity of hemicellulases	78
	2.5.2	Hemicellulases in the processing of lignocellulosic biomass	80
2.6	Ligni	n-Degrading Enzymes as Aids in Saccharification	81
2.7	Comn	nercial Choices of Lignocellulosic Feedstocks	
	for Bi	oethanol Production	81

2.8	Biotechnology and Platform Technologies for	
	Lignocellulosic Ethanol	86
Refe	rences	86

Chapter 3

Biote	echnolo	gy of Bioethanol Production from Lignocellulosic Feedstocks)5
3.1	Traditi	ional Ethanologenic Microbes)5
	3.1.1	Yeasts)6
	3.1.2	Bacteria)2
3.2	Metab	olic Engineering of Novel Ethanologens10)4
	3.2.1	Increased pentose utilization by ethanologenic yeasts by	
		genetic manipulation with yeast genes for xylose	
		metabolism via xylitol)4
	3.2.2	Increased pentose utilization by ethanologenic yeasts by	
		genetic manipulation with genes for xylose isomerization	11
	3.2.3	Engineering arabinose utilization by ethanologenic yeasts	12
	3.2.4	Comparison of industrial and laboratory yeast strains for	
		ethanol production	4
	3.2.5	Improved ethanol production by naturally	
		pentose-utilizing yeasts	8
3.3	Assem	bling Gene Arrays in Bacteria for Ethanol Production	20
	3.3.1	Metabolic routes in bacteria for sugar metabolism and	
		ethanol formation	20
	3.3.2	Genetic and metabolic engineering of bacteria for	
		bioethanol production	21
	3.3.3	Candidate bacterial strains for commercial	
		ethanol production in 2007	33
3.4	Extrap	polating Trends for Research with Yeasts and Bacteria for	
	Bioeth	anol Production	35
	3.4.1	"Traditional" microbial ethanologens	35
	3.4.2	"Designer" cells and synthetic organisms	11
Refe	rences.		12

Bioc	hemica	l Engineering and Bioprocess Management for Fuel Ethanol	157
4.1	The Io	gen Corporation Process as a Template and Paradigm	157
4.2	Bioma	ss Substrate Provision and Pretreatment	160
	4.2.1	Wheat straw — new approaches to	
		complete saccharification	161
	4.2.2	Switchgrass	162
	4.2.3	Corn stover	164
	4.2.4	Softwoods	167
	4.2.5	Sugarcane bagasse	170
	4.2.6	Other large-scale agricultural and forestry	
		biomass feedstocks	171

Contents

4.3	Ferm	entation Media and the "Very High Gravity" Concept	. 172
	4.3.1	Fermentation media for bioethanol production	. 173
	4.3.2	Highly concentrated media developed for	
		alcohol fermentations	174
4.4	Ferme	entor Design and Novel Fermentor Technologies	179
	4.4.1	Continuous fermentations for ethanol production	179
	4.4.2	Fed-batch fermentations	184
	4.4.3	Immobilized yeast and bacterial cell production designs	185
	4.4.4	Contamination events and buildup in fuel ethanol plants	187
4.5	Simul	taneous Saccharification and Fermentation and	
	Direc	t Microbial Conversion	189
4.6	Down	stream Processing and By-Products	194
	4.6.1	Ethanol recovery from fermented broths	194
	4.6.2	Continuous ethanol recovery from fermentors	195
	4.6.3	Solid by-products from ethanol fermentations	196
4.7	Genet	ic Manipulation of Plants for Bioethanol Production	199
	4.7.1	Engineering resistance traits for biotic and abiotic stresses	199
	4.7.2	Bioengineering increased crop vield	200
	4.7.3	Optimizing traits for energy crops intended for biofuel	
		production	203
	4.7.4	Genetic engineering of dual-use food plants and dedicated	
		energy crops	205
4.8	A Dec	cade of Lignocellulosic Bioprocess Development:	
	Stagn	ation or Consolidation?	206
Refe	rences		211
~			

Chapter 5

.

The	Econor	nics of Bioethanol	227
5.1	Bioeth	nanol Market Forces in 2007	
	5.1.1	The impact of oil prices on the "future" of	
		biofuels after 1980	
	5.1.2	Production price, taxation, and incentives in the	
		market economy	
5.2	Cost N	Models for Bioethanol Production	
	5.2.1	Early benchmarking studies of corn and lignocellulosic	
		ethanol in the United States	
	5.2.2	Corn ethanol in the 1980s: rising industrial ethanol prices	
		and the development of the "incentive" culture	
	5.2.3	Western Europe in the mid-1980s: assessments of biofuels	
		programs made at a time of falling real oil prices	
	5.2.4	Brazilian sugarcane ethanol in 1985: after the first decade	
		of the Proálcool Program to substitute for imported oil	
	5.2.5	Economics of U.S. corn and biomass ethanol economics	
		in the mid-1990s	
	5.2.6	Lignocellulosic ethanol in the mid-1990s:	
		the view from Sweden	

	5.2.7	Subsequent assessments of lignocellulosic	
		ethanol in Europe and the United States	246
5.3	Pilot H	Plant and Industrial Extrapolations for Lignocellulosic Ethanol	251
	5.3.1	Near-future projections for bioethanol production costs	251
	5.3.2	Short- to medium-term technical process improvements with	
		their anticipated economic impacts	253
	5.3.3	Bioprocess economics: a Chinese perspective	257
5.4	Delive	ering Biomass Substrates for Bioethanol Production:	
	The E	conomics of a New Industry	258
	5.4.1	Upstream factors: biomass collection and delivery	258
	5.4.2	Modeling ethanol distribution from	
		production to the end user	259
5.5	Sustai	nable Development and Bioethanol Production	260
	5.5.1	Definitions and semantics	260
	5.5.2	Global and local sustainable biomass	
		sources and production	261
	5.5.3	Sustainability of sugar-derived ethanol in Brazil	264
	5.5.4	Impact of fuel economy on ethanol demand	
		for gasoline blends	269
5.6	Scrapi	ing the Barrel: an Emerging Reliance on	
	Biofue	els and Biobased Products?	271
Refe	rences.		279

Div	ersifyin	g the Biofuels Portfolio	
6.1	Biodiesel: Chemistry and Production Processes		
	6.1.1	Vegetable oils and chemically processed biofuels	
	6.1.2	Biodiesel composition and production processes	
	6.1.3	Biodiesel economics	
	6.1.4	Energetics of biodiesel production and effects on	
		greenhouse gas emissions	
	6.1.5	Issues of ecotoxicity and sustainability with expanding	
		biodiesel production	
6.2	Fisch	er-Tropsch Diesel: Chemical Biomass-to-Liquid Fuel	
	Trans	formations	
	6.2.1	The renascence of an old chemistry for	
		biomass-based fuels?	
	6.2.2	Economics and environmental impacts of FT diesel	
6.3	Methanol, Glycerol, Butanol, and Mixed-Product "Solvents"		
	6.3.1	Methanol: thermochemical and biological routes	
	6.3.2	Glycerol: fermentation and chemical synthesis routes	
	6.3.3	ABE (acetone, butanol, and ethanol) and "biobutanol"	
6.4	Adva	nced Biofuels: A 30-Year Technology Train	
Refe	erences		

Contents

Chapter 7

Rad	ical Options f	for the Development of Biofuels	321
7.1	Biodiesel fro	om Microalgae and Microbes	
	7.1.1 Mari	ne and aquatic biotechnology	
	7.1.2 "Mic	rodiesel"	
7.2	Chemical R	outes for the Production of Monooxygenated	
	C6 Liquid F	uels from Biomass Carbohydrates	
7.3	Biohydroger	۵	
	7.3.1 The	hydrogen economy and fuel cell technologies	
	7.3.2 Biop	roduction of gases: methane and H_2 as products of	
	anae	robic digestion	
	7.3.3 Prod	uction of H ₂ by photosynthetic organisms	
	7.3.4 Eme	rgence of the hydrogen economy	
7.4	Microbial F	uel Cells: Eliminating the Middlemen of	
	Energy Carr	riers	
7.5	Biofuels or a	a Biobased Commodity Chemical Industry?	
Refe	rences	- · ·	

Biof	uels as	Products of Integrated Bioprocesses	353		
8.1	The B	The Biorefinery Concept			
8.2	Bioma	Biomass Gasification as a Biorefinery Entry Point			
8.3	Ferme	entation Biofuels as Biorefinery Pivotal Products	357		
	8.3.1	Succinic acid	361		
	8.3.2	Xylitol and "rare" sugars as fine chemicals			
	8.3.3	Glycerol — A biorefinery model based on biodiesel	. 367		
8.4	The S	trategic Integration of Biorefineries with the Twenty-First Century			
	Ferme	entation Industry	. 369		
8.5	Postso	ript: What Biotechnology Could Bring About by 2030	. 372		
	8.5.1	Chicago, Illinois, October 16-18, 2007	. 373		
	8.5.2	Biotechnology and strategic energy targets beyond 2020	. 375		
	8.5.3	Do biofuels need — rather than biotechnology — the			
		petrochemical industry?	. 377		
Refe	rences		. 379		
Inde	x		. 385		