CONTENTS

ENZYMES FOR SPECIALIZED APPLICATIONS

1.	Enzymes for Fuels and Chemical Feedstocks	2
2.	Enzymes in Pulp and Paper Processing	12
3.	Enzymes for Anaerobic Municipal Solid Waste Disposal	22
4.	Thermostable Saccharidases : New Sources, Uses,	
	and Biodesigns	36
5.	Mannan-Degrading Enzymes Produced by Bacillus	
	Species AM-001	52
6.	Proteinases and Their Inhibitors in Biotechnology	62
7.	Subtilisin : Commercially Relevant Model for Large-Scale	
	Enzyme Production	82
8.	Enzymes from Solid Substrates : Recovering Extracellular	
	Degradative Enzymes for Lentinula edodes Cultures Grown	
	on Commercial Wood Medium	95
9.	Producting of Trichoderma reesei Cellulase System	
	with High Hydrolytic Potential by Solid-State Fermentation	111
10.	Role of Statistically Designed Experiments in the Development	
	of Efficient Downstream Processes	123
11.	Enhanced Utility of Polysaccharidases through Chemical	
	Cross-Linking and immobilization : Application	
	to Fungal β -D-Glucosidase	137
12.	Bioprocessing Aids in the Recovery of Proteins	152
13.	Chromatography in Enzyme Isolation and Production	169

LIGNINASES AND OXIDATIVE ENZYMES

14.	Lignin Peroxidase : Catalysis, Oxycomplex, and Heme-Linked	
	Ionization	180
15.	Structure and Regulation of Manganese Peroxidase Gene	
	from Phanerochaete chrysosporium	188
16.	Regulation of Ligninase Production in White-Rot Fungi	200
17.	Laccases of the Ligninolytic Fungus Coriolus versicolor	207
18.	Pilot-Scale Production and Properties of Lignin Peroxidases	225
19.	Chemistry of Lignin Degradation by Lignin Peroxidases	236
20.	Enzymatic Lignin Degradation : An Extracurricular View	247
21.	Lignin-Carbohydrate complexes from Poplar Wood : Isolation	
	And Enzymatic Degradation	270

β-GLUCANASES (CELLULASES)

22.	Cellulose : Insights through Recombinant DNA Approaches	290
23.	Structure of Cellulolytic Enzymes	301
24.	Thermal Unfolding of Trichoderma reesei CBH I	313
25.	Bacterial Cellulases : Regulation of Synthesis	331
26.	Cellulomonas fumi β-1,4-Glucanase	349

α-GLUCANASES AND POLYSACCHARIDASES

27.	Comparison of Amylopullulanase to α-Amylase	
	and pullulanase	362
28.	Cyclodextrin Glucanotransferases : Technology and Biocatalyst	
	Design	372
29.	Starch Liquefaction with a Highly Thermostable Cyclodextrin	
	Glycosyl Transferase from Thermoanaerobacter Species	384
30.	Reactions of Glucansucrases in the Biomass Conversion	
	Of Sucrose	394

OTHER POLYSACCHARIDASES, OLIGOSACCHARIDASES,

AND ISOMERASES

31.	Biotechnological Potential and Production of Xylanolytic	
	Systems Free of Cellulases	408
32.	Catalytic Properties and Partial Amino Acid Sequence	
	of and Actinomycete Endo- $(1 4)$ - β -D-Xylanase	
	from Chainia Species	417
33.	Accessory Enzymes Involved in the Hydrolysis of Xylans	426
34.	Comparison of Endolytic Hydrolases That Depolymerize	
	1, 4-β-D-Mannan, 1, 5-α-L-Arabinan, and 1, 4-β-D-Galactan	437
35.	Microbial Strategies for the Depolymerization of Plant	
	and Algal Polyuronates	450
36.	Synergism between $1,3-\beta$ -Glucanases in Yeast Cell	
	Wall Zymolysis	467
37.	Chitinases	478
38.	Xylose-Glucose Isomerases : Structure, Homology	
	and Function	486
INI	DEXES	
Aut	thor Index	503

Affiliation Index	504
Subject Index	504