Contents 1 | 1 | Preservation of Quality Through Packaging 1 | |---------|---| | | Albert Baner and Otto Piringer | | 1.1 | Quality and Shelf-Life 1 | | 1.2 | Physical and Chemical Interactions Between Plastics and Food or Pharmaceuticals 4 | | 1.3 | The Organization of this Book 5 Further Reading 12 | | 2 | Characteristics of Plastic Materials 15 | | | Johannes Brandsch and Otto Piringer | | 2.1 | Classification, Manufacture, and Processing Aids 15 | | 2.1.1 | Classification and Manufacture of Plastics 16 | | 2.1.1.1 | Raw Materials and Polymerization Processes 17 | | 2.1.1.2 | Addition Polymerization 18 | | 2.1.1.3 | Condensation Polymerization 19 | | 2.1.1.4 | Synthesis of Copolymers, Block, and Graft Copolymers 19 | | 2.1.1.5 | Polymer Reactions 20 | | 2.1.1.6 | Plastic Processing 22 | | 2.1.2 | Processing Aids 23 | | 2.1.2.1 | Initiators and Crosslinkers 24 | | 2.1.2.2 | Catalysts 25 | | 2.2 | Structure and States of Aggregation in Polymers 26 | | 2.2.1 | Structure 26 | | 2.2.2 | States of Aggregation 29 | | 2.3 | The Most Important Plastics 32 | | 2.3.1 | Thermoplastics 32 | | 2.3.1.1 | Polyethylene 32 | | | | | ٧ı | Contents | | |----|----------|---| | | 2.3.1.2 | Polypropylene 34 | | | 2.3.1.3 | Polybutene-1 36 | | | 2.3.1.4 | Polyisobutylene 36 | | | 2.3.1.5 | Poly-4-methylpentene-1 (P4MP1) 36 | | | 2.3.1.6 | Ionomers 36 | | | 2.3.1.7 | Cyclic Olefin Copolymers (COC) 37 | | | 2.3.1.8 | Polystyrene 38 | | | 2.3.1.9 | Polyvinyl Chloride 39 | | | 2.3.1.10 | Polyvinylidene Chloride 41 | | | 2.3.1.11 | Thermoplastic Polyesters 41 | | | 2.3.1.12 | Polycarbonate 42 | | | 2.3.1.13 | Polyamide 43 | | | 2.3.1.14 | Polymethylmethacrylate 44 | | | 2.3.1.15 | Polyoxymethylene or Acetal Resin 45 | | | 2.3.1.16 | Polyphenylene Ether (PPE) 45 | | | 2.3.1.17 | Polysulfone 45 | | | 2.3.1.18 | Fluoride Containing Polymers 46 | | | 2.3.1.19 | Polyvinylether 46 | | | 2.3.2 | Thermosets 46 | | | 2.3.2.1 | Amino Resins (UF, MF) 47 | | | 2.3.2.2 | Unsaturated Polyester (UP) 47 | | | 2.3.3 | Polyurethanes 48 | | | 2.3.4 | Natural and Synthetic Rubber 49 | | | 2.3.5 | Silicones 51 | | | 2.3.6 | Plastics Based on Natural Polymers Regenerated Cellulose 54 | | | 2.3.6.1 | Biodegradable Polymers 54 | | | 2.3.7 | Coatings and Adhesives 55 | | | 2.3.7.1 | Lacquers 56 | | | 2.3.7.2 | Plastic Dispersions 57 | | | 2.3.7.3 | Microcrystalline Waxes 57 | | | 2.3.7.4 | Temperature-Resistant Coatings 58 | | | 2.3.7.5 | Printing Inks and Varnishes 59 | | | | References 60 | | | 3 | Polymer Additives 63 | | | | Jan Pospíšil and Stanislav Nešpůrek | | | 3.1 | Introduction 63 | | | 3.2 | Antifogging Agents 64 | | | 3.3 | Antistatic Agents 65 | | | 3.4 | Blowing Agents 65 | | | 3.5 | Colorants 66 | | | 3.6 | Fillers and Reinforcing Agents 66 | | | 37 | Lubricants 67 | Nucleating Agents 67 Optical Brighteners 68 3.8 3.9 | 3.10 | Plasticizers 68 | |--|---| | 3.11 | Stabilizers 70 | | 3.11.1 | Antiacids 71 | | 3.11.2 | Antimicrobials 72 | | 3.11.3 | Antioxidants 72 | | 3.11.3.1 | Chain-Breaking Antioxidants 73 | | 3.11.3.2 | Hydroperoxide Deactivating Antioxidants 74 | | 3.11.4 | Dehydrating Agent 75 | | 3.11.5 | Heat Stabilizers 75 | | 3.11.6 | Light Stabilizers 76 | | 3.11.6.1 | Light Screening Pigments and UV Absorbers 76 | | 3.11.6.2 | Photoantioxidants 77 | | 3.12 | Transformation Products of Plastic Stabilizers 78 | | 3.12.1 | Transformation Products from Phenolic Antioxidants and UV | | | Absorbers 79 | | 3.12.2 | Transformation Products from Hydroperoxide Deactivating | | | Antioxidants 83 | | 3.12.3 | Transformation Products from Hindered Amine | | | Stabilizers 84 | | 3.12.4 | Transformation Products from Heat Stabilizers for PVC 85 | | 3.13 | Conclusions 86 | | | References 86 | | | | | | | | 4 | Partition Coefficients 89 | | 4 | Albert Baner and Otto Piringer | | 4 4 .1 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition | | | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 | | 4.1 4.2 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 | | 4.1
4.2
4.2.1 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 | | 4.1 4.2 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility Coefficients 98 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility Coefficients 98 Estimation of Partition Coefficients Between Polymers and | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3
4.2.4
4.3 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility Coefficients 98 Estimation of Partition Coefficients Between Polymers and Liquids 99 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3
4.2.4 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility Coefficients 98 Estimation of Partition Coefficients Between Polymers and Liquids 99 Additive Molecular Properties 99 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3
4.2.4
4.3
4.3.1
4.3.2 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility Coefficients 98 Estimation of Partition Coefficients Between Polymers and Liquids 99 Additive Molecular Properties 99 Estimation of Partition Coefficients Using QSAR and QSPR 102 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3
4.2.4
4.3 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility Coefficients 98 Estimation of Partition Coefficients Between Polymers and Liquids 99 Additive Molecular Properties 99 Estimation of Partition Coefficients Using QSAR and QSPR 102 Group-Contribution Thermodynamic Polymer Partition Coefficient | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3
4.2.4
4.3
4.3.1
4.3.2
4.3.3 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility Coefficients 98 Estimation of Partition Coefficients Between Polymers and Liquids 99 Additive Molecular Properties 99 Estimation of Partition Coefficients Using QSAR and QSPR 102 Group-Contribution Thermodynamic Polymer Partition Coefficient Estimation Methods 102 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3
4.2.4
4.3
4.3.1
4.3.2
4.3.3
4.3.3.1 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility Coefficients 98 Estimation of Partition Coefficients Between Polymers and Liquids 99 Additive Molecular Properties 99 Estimation of Partition Coefficients Using QSAR and QSPR 102 Group-Contribution Thermodynamic Polymer Partition Coefficient Estimation Methods 102 Estimation of Partition Coefficients Using RST 104 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3
4.2.4
4.3
4.3.1
4.3.2
4.3.3
4.3.3.1
4.3.3.2 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility Coefficients 98 Estimation of Partition Coefficients Between Polymers and Liquids 99 Additive Molecular Properties 99 Estimation of Partition Coefficients Using QSAR and QSPR 102 Group-Contribution Thermodynamic Polymer Partition Coefficient Estimation Methods 102 Estimation of Partition Coefficients Using RST 104 Estimation of Partition Coefficients Using UNIFAC 104 | | 4.1
4.2
4.2.1
4.2.1.1
4.2.2
4.2.2.1
4.2.3
4.2.4
4.3
4.3.1
4.3.2
4.3.3
4.3.3.1 | Albert Baner and Otto Piringer Experimental Determination of Polymer/Liquid Partition Coefficients 89 Thermodynamics of Partition Coefficients 90 Equilibrium Between Different Phases in Ideal Solutions 91 Partitioning in Ideal Solutions: Nernst's Law 92 Equilibrium Between Different Phases in Nonideal Solutions 93 Partition Coefficients for Nonideal Solutions 94 Partition Coefficients for Systems with Polymers 96 Relationship Between Partition Coefficients and Solubility Coefficients 98 Estimation of Partition Coefficients Between Polymers and Liquids 99 Additive Molecular Properties 99 Estimation of Partition Coefficients Using QSAR and QSPR 102 Group-Contribution Thermodynamic Polymer Partition Coefficient Estimation Methods 102 Estimation of Partition Coefficients Using RST 104 | | | ients Using Elbro Free Volume Model 108 | |--|---| | 4.3.3.5 Comparison of Thermodynar Coefficient Estimation Metho | nic Group-Contribution Partition | | 4.3.4 Vapor Pressure Index Partition | n Coefficient Estimation Method 109 | | 4.3.4.1 Examples of Vapor Pressure 1
References 118 | ndex Values 112 | | 5 Models for Diffusion in Polym
Peter Mercea | ers 123 | | 5.1 Diffusion in Polymers – The | Classical Approach 125 | | 5.1.1 Diffusion in Rubbery Polyme | | | 5.1.1.1 Molecular Models 126 | , | | 5.1.1.2 The Molecular Model of Pace | and Datyner 129 | | 5.1.1.3 Free-Volume Models 131 | | | 5.1.1.4 The Free-Volume Model of V | rentas and Duda 133 | | 5.1.2 Diffusion in Glassy Polymers | 135 | | 5.2 Diffusion in Polymers – The | Computational Approach 140 | | 5.2.1 Molecular Dynamics 142 | | | 5.2.2 The Transition-State Approach | h 150 | | 5.3 Conclusions 154 | | | References 158 | | | | | | 6 A Uniform Model for Predictic Emphasis on Plastic Materials | | | Emphasis on Plastic Materials
Otto Piringer | | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 | | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 | | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 | 163 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C | pefficients 168 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Ali | pefficients 168
kanes 168 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al | pefficients 168 kanes 168 kanes 170 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of Atom 6.3.3 Melting Temperatures of Atom 6.3.4 Melting Temperatures of Atom 6.3.5 Melting Temperatures of Atom 6.3.6 Melting Temperatures of Atom 6.3.7 Melting Temperatures of Atom 6.3.8 Melting Temperatures of Atom 6.3.9 Melting Temperatures of Atom 6.3.9 Melting Temperatures of Atom 6.3.1 Melting Temperatures of Atom 6.3.2 Melting Temperatures of Atom 6.3.3 Melting Temperatures of Atom 6.3.4 Melting Temperatures of Atom 6.3.5 Melting Temperatures of Atom 6.3.7 6.3.8 Melting Temperatures of Atom 6.3.9 Melting Temperatures of Atom 6.3.1 Melting Temperatures of Atom 6.3.1 Melting Temperatures of Atom 6.3.2 Melting Temperatures of Atom 6.3.3 Melting Temperatures of Atom 6.3.3 Melting Temperatures of Atom 6.3.4 6. | pefficients 168 kanes 168 kanes 170 m Clusters 173 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Atom 6.3.4 Critical Compression Factor | pefficients 168 kanes 168 kanes 170 n Clusters 173 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Ato 6.3.4 Critical Compression Factor 6.3.5 The Entropy of Evaporation | pefficients 168 canes 168 kanes 170 n Clusters 173 175 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Ato 6.3.4 Critical Compression Factor 6.3.5 The Entropy of Evaporation 6.3.6 The Reference Temperatures a | peefficients 168 kanes 168 kanes 170 m Clusters 173 175 175 nd the Reference Molar Volume 176 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Ato 6.3.4 Critical Compression Factor 6.3.5 The Entropy of Evaporation 6.3.6 The Reference Temperature a 6.4 The Diffusion Coefficient 1 | pefficients 168 canes 168 kanes 170 n Clusters 173 175 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Ato 6.3.4 Critical Compression Factor 6.3.5 The Entropy of Evaporation 6.3.6 The Reference Temperature a 6.4 The Diffusion Coefficient 1 | pefficients 168 kanes 168 kanes 170 n Clusters 173 175 175 nd the Reference Molar Volume 176 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Ato 6.3.4 Critical Compression Factor 6.3.5 The Entropy of Evaporation 6.3.6 The Reference Temperature a 6.4 The Diffusion Coefficient 1 6.4.1 Diffusion in Gases 178 | pefficients 168 kanes 168 kanes 170 n Clusters 173 175 175 nd the Reference Molar Volume 176 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Ator 6.3.4 Critical Compression Factor 6.3.5 The Entropy of Evaporation 6.3.6 The Reference Temperature a 6.4 The Diffusion Coefficient 1 6.4.1 Diffusion in Gases 178 6.4.2 Diffusion in the Critical States | poefficients 168 kanes 168 kanes 170 m Clusters 173 175 175 nd the Reference Molar Volume 176 78 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Ato 6.3.4 Critical Compression Factor 6.3.5 The Entropy of Evaporation 6.3.6 The Reference Temperature a 6.4 The Diffusion Coefficient 1 6.4.1 Diffusion in Gases 178 6.4.2 Diffusion in the Critical State 6.4.3 Diffusion in Solids 181 | poefficients 168 canes 168 kanes 170 m Clusters 173 175 175 nd the Reference Molar Volume 176 78 181 Metals 181 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Ato 6.3.4 Critical Compression Factor 6.3.5 The Entropy of Evaporation 6.3.6 The Reference Temperature a 6.4 The Diffusion Coefficient 1 6.4.1 Diffusion in Gases 178 6.4.2 Diffusion in the Critical State 6.4.3 Diffusion in Solids 181 6.4.3.1 Self-diffusion Coefficients in | perficients 168 canes 168 kanes 170 n Clusters 173 175 175 nd the Reference Molar Volume 176 78 181 Metals 181 Semiconductors and Salts 183 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Ator 6.3.4 Critical Compression Factor 6.3.5 The Entropy of Evaporation 6.3.6 The Reference Temperature a 6.4 The Diffusion Coefficient 1 6.4.1 Diffusion in Gases 178 6.4.2 Diffusion in the Critical State 6.4.3 Diffusion in Solids 181 6.4.3.1 Self-diffusion Coefficients in 6.4.3.2 Self-Diffusion Coefficients in 6.4.3.3 Self-Diffusion Coefficients in | perficients 168 canes 168 kanes 170 n Clusters 173 175 175 nd the Reference Molar Volume 176 78 181 Metals 181 Semiconductors and Salts 183 | | Emphasis on Plastic Materials Otto Piringer 6.1 Introduction 163 6.2 Interaction Model 166 6.2.1 Model Assumptions 166 6.3 Prerequisites for Diffusion C 6.3.1 Critical Temperatures of n-Al 6.3.2 Melting Temperatures of n-Al 6.3.3 Melting Temperatures of Ator 6.3.4 Critical Compression Factor 6.3.5 The Entropy of Evaporation 6.3.6 The Reference Temperature a 6.4 The Diffusion Coefficient 1 6.4.1 Diffusion in Gases 178 6.4.2 Diffusion in the Critical State 6.4.3 Diffusion in Solids 181 6.4.3.1 Self-diffusion Coefficients in 6.4.3.2 Self-Diffusion Coefficients in 6.4.3.3 Self-Diffusion Coefficients in | perficients 168 kanes 168 kanes 170 n Clusters 173 175 175 nd the Reference Molar Volume 176 78 181 Metals 181 Semiconductors and Salts 183 n-Alkanes 184 | | 6.4.5 | Diffusion in Plastic Materials 188 | | | |---------|---|--|--| | 6.4.5.1 | Diffusion Coefficients of <i>n</i> -Alkanes in Polyethylene 188 | | | | 6.4.5.2 | Diffusion Coefficients of Additives in Polymers 191 | | | | | References 193 | | | | 7 | Transport Equations and Their Solutions 195 | | | | | Otto Piringer and Titus Beu | | | | 7.1 | The Transport Equations 195 | | | | 7.1.1 | The Terminology of Flow 196 | | | | 7.1.2 | The Differential Equations of Diffusion 197 | | | | 7.1.3 | The General Transport Equations 200 | | | | 7.2 | Solutions of the Diffusion Equation 201 | | | | 7.2.1 | Steady State 202 | | | | 7.2.2 | Nonsteady State 202 | | | | 7.2.3 | Diffusion in a Single-Phase Homogeneous System 203 | | | | 7.2.3.1 | Dimensionless Parameters and the Proportionality of Mass Transfer | | | | | to the Square Root of Time 209 | | | | 7.2.3.2 | Comparison of Different Solutions for the Same Special Cases 212 | | | | 7.2.4 | Diffusion in Multiphase Systems 213 | | | | 7.2.4.1 | Diffusion in Polymer/Liquid Systems 213 | | | | 7.2.4.2 | Influence of Diffusion in Food 224 | | | | 7.2.5 | Surface Evaporation 225 | | | | 7.2.6 | Permeation Through Homogeneous Materials 227 | | | | 7.2.7 | Permeation Through a Laminate 228 | | | | 7.2.8 | Concentration Dependence of the Diffusion Coefficient 228 | | | | 7.2.9 | Diffusion and Chemical Reaction 229 | | | | 7.3 | Numerical Solutions of the Diffusion Equation 230 | | | | 7.3.1 | Why Numerical Solutions? 230 | | | | 7.3.2 | Finite-Difference Solution by the Explicit Method 231 | | | | 7.3.2.1 | von Neumann Stability Analysis 236 | | | | 7.3.2.2 | The Crank–Nicholson Implicit Method 237 | | | | 7.3.3 | Spatially Variable Diffusion Coefficient 240 | | | | 7.3.4 | Boundary Conditions 241 | | | | 7.3.5 | One-Dimensional Diffusion in Cylindrical and Spherical | | | | | Geometry 243 | | | | 7.3.6 | Multidimensional Diffusion 245 | | | | | References 246 | | | | 8 | Solution of the Diffusion Equation for Multilayer Packaging 247 | | | | | Valer Tosa and Peter Mercea | | | | 8.1 | Introduction 247 | | | | 8.2 | Methods for Solving the Diffusion Problem in a Multilayer (ML) | | | | | Packaging 248 | | | | 8.3 | Solving the Diffusion Equation for a Multilayer Packaging in | | | | | Contact with a Foodstuff 251 | | | | x | Contents | | |---|----------|--| | • | 8.4 | Development of a User-Friendly Software for the Estimation of
Migration from Multilayer Packaging 256
References 261 | | | 9 - | User-Friendly Software for Migration Estimations 263 | | | | Peter Mercea, Liviu Petrescu, Otto Piringer and Valer Tosa | | | 9.1 | Introduction 263 | | | 9.2 | MIGRATEST [©] Lite – A User-Friendly Software for Migration | | | | Estimations 266 | | | 9.2.1 | Basic Features of MIGRATEST [©] Lite and Input Data Menus 266 | | | 9.2.2 | Estimation of Migration with MIGRATEST Lite 276 | | | 9.2.3 | Output Information Delivered by MIGRATEST [©] Lite 278 | | | 9.2.4 | Case Examples Computed with MIGRATEST [©] Lite 278 | | | 9.2.5 | Migration Estimations with the MIGRATEST® EXP Software 281 | | | 9.2.6 | Case Examples Computed with MIGRATEST®EXP 287 | | | | References 296 | | | 10 | Permeation of Gases and Condensable Substances Through | | | | Monolayer and Multilayer Structures 297 | | | | Horst-Christian Langowski | | | 10.1 | Introduction: Barrier Function of Polymer-Based | | | | Packaging 297 | | | 10.2 | Permeation Through Polymeric Materials 302 | | | 10.2.1 | Substance Transport Through Monolayer Polymer Films 303 | | 10 | Permeation of Gases and Condensable Substances Through | | |--------|---|--| | | Monolayer and Multilayer Structures 297 | | | | Horst-Christian Langowski | | | 10.1 | Introduction: Barrier Function of Polymer-Based | | | | Packaging 297 | | | 10.2 | Permeation Through Polymeric Materials 302 | | | 10.2.1 | Substance Transport Through Monolayer Polymer Films 303 | | | 10.2.2 | Substance Transport Through Multilayer Polymer Films | | | | (Laminates) 305 | | | 10.2.3 | Units for Different Parameters 307 | | | 10.3 | Substance Transport Through Single and Multilayer Polymer | | | | Substrates Combined with One Inorganic Barrier Layer 307 | | | 10.3.1 | Numerical Modeling 307 | | | 10.3.2 | Simplification: Barrier Improvement Factor 311 | | | 10.3.3 | Multilayer Polymer Substrates Combined with One Inorganic | | | | Layer 313 | | | 10.3.4 | Polymer Substrates Combined with an Inorganic | | | | Barrier Layer and Other Polymer Layers on Top of | | | | the Inorganic Layer 314 | | | 10.3.5 | Temperature Behavior of the Structures Shown Above 316 | | | 10.3.6 | Substance Transport Through Thin Polymer Layers Having | | | | Inorganic Layers on Both Sides 317 | | | 10.5 | Substance Transport Through Polymers Filled with | | Experimental Findings: Polymer Films and One Inorganic Structures and Defects in Inorganic Barrier Layers on Polymer Particles 320 Barrier Layer 321 Substrates 323 10.6 10.6.1 | 10.6.2 | Comparison of Model Calculations and Experimental Results for | |----------|---| | 10 (2 | Combinations of Polymer Films and One Inorganic Barrier Layer 324 | | 10.6.3 | Apparent Additional Transport Mechanisms for Water Vapor 327 | | 10.6.4 | Properties of Systems with at least One Inorganic Layer | | | Embedded Between to Polymer Layers or Films 332 | | 10.7 | Experimental Findings: Combinations of Polymer Films and More | | | Than One Inorganic Barrier Layer 332 | | 10.8 | Experimental Findings: Polymers Filled with Platelet-Shaped | | 100 | Particles 333 | | 10.9 | Experimental Findings: Permeation of Flavors Through Mono- and | | | Multilayer Films and Combinations with Inorganic Barrier | | 1010 | Layers 338 | | 10.10 | Conclusions 342 | | | References 342 | | 11 | Migration of Plastic Constituents 349 | | | Roland Franz and Angela Störmer | | 11.1 | Definitions and Theory 349 | | 11.1.1 | Migration, Extraction, and Adsorption 349 | | 11.1.2 | Functional Barrier 350 | | 11.1.3 | Legal Migration Limits and Exposure 350 | | 11.1.4 | Parameters Determining Migration 352 | | 11.2 | Indirect Migration Assessment 354 | | 11.2.1 | Worst-Case (Total Mass Transfer) Assumption 355 | | 11.2.2 | General Considerations: Taking Solubility and/or Low Diffusivity of | | | Certain Plastics into Account 357 | | 11.2.3 | Migration Assessment of Mono- and Multilayers by Application of | | | Complex Mathematical Models 359 | | 11.2.4 | Multilayers 359 | | 11.3 | Migration Experiment 361 | | 11.3.1 | Direct Migration Measurement in Conventional and Alternative | | | Simulants 361 | | 11.3.2 | Accelerated Migration Tests: Alternative Migration Tests 362 | | 11.3.3 | Choice of Appropriate Test Conditions 365 | | 11.3.3.1 | Food Simulants 365 | | 11.3.3.2 | Time–Temperature Conditions 367 | | 11.3.3.3 | Surface-to-Volume Ratio 369 | | 11.3.3.4 | Migration Contact 370 | | 11.4 | Analysis of Migration Solutions 372 | | 11.4.1 | Overall Migration 372 | | 11.4.1.1 | Aqueous and Alternative Volatile Simulants 372 | | 11.4.1.2 | Olive Oil 372 | | 11.4.1.3 | Modified Polyphenylene Oxide (Tenax®) 373 | | 11.4.2 | Specific Migration 374 | | 11.4.2.1 | Vinyl Chloride EU Directives 374 | | (II | Contents | |------------|----------| | \II | Contents | | 11.4.2.2 | EN 13130 Series 374 | |--|--| | 11.4.2.3 | Further Standard Methods 375 | | 11.4.2.4 | Methods of Analysis in Petitions to the European Commission 376 | | 11.4.2.5 | Methods in Foods (Foodmigrosure Project) 377 | | 11.5 | Development of Methods, Validation, and Verification 378 | | 11.5.1 | Establishing (Juristically) Valid Performance of Methods 378 | | 11.5.2 | A Practical Guide for Developing and Prevalidation of Analytical | | | Methods 380 | | 11.5.3 | Validation Requirements for EU Food Contact Petitions and US | | | FDA Food Contact Notifications 387 | | 11.5.4 | Determination of the Detection Limit 387 | | 11.5.5 | Analytical Uncertainty 389 | | 11.5.6 | Use of the Precision Data from Fully Validated Methods 390 | | 11.6 | Sources of Errors 394 | | 11.6.1 | Highly Volatile Migrants 394 | | 11.6.2 | Reaction with Food/Simulant Constituents 395 | | 11.6.3 | Migrants in Reactive Processes (e.g., Primary Aromatic Amines | | | from Adhesives) 397 | | 11.7 | Migration into Food Simulants in Comparison to Foods 400 | | 11.8 | Consideration of Non Intentionally Added Substances (NIAS) and Other | | | not Regulated Migrants 407 | | | References 409 | | | | | 12 | US EDA Food Contact Materials Bogulations 417 | | 12 | US FDA Food Contact Materials Regulations 417 | | | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski | | 12.1 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski
Introduction 417 | | 12.1
12.2 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski
Introduction 417
Regulatory Authority 417 | | 12.1
12.2
12.2.1 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski
Introduction 417
Regulatory Authority 417
Federal Food, Drug and Cosmetic Act (FFDCA) 417 | | 12.1
12.2
12.2.1
12.2.2 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 | | 12.1
12.2
12.2.1
12.2.2
12.3 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3.3 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 Toxicology Information 426 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3,3
12.3.3.1 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 Toxicology Information 426 Safety Assessment 427 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3
12.3.3.1
12.3.3.2 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 Toxicology Information 426 Safety Assessment 427 General Considerations 431 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3
12.3.3.1
12.3.3.2 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 Toxicology Information 426 Safety Assessment 427 General Considerations 431 Environmental Information 432 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3
12.3.3.1
12.3.3.2
12.3.4
12.3.4.1 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 Toxicology Information 426 Safety Assessment 427 General Considerations 431 Environmental Information 432 Claim of categorical exclusion 432 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3
12.3.3.1
12.3.3.2
12.3.4
12.3.4.1 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 Toxicology Information 426 Safety Assessment 427 General Considerations 431 Environmental Information 432 Claim of categorical exclusion 432 Environmental Assessment (EA) 434 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3
12.3.3.1
12.3.3.2
12.3.4.1
12.3.4.2
12.3.4.3 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 Toxicology Information 426 Safety Assessment 427 General Considerations 431 Environmental Information 432 Claim of categorical exclusion 432 Environmental Assessment (EA) 434 Polymeric Food Packaging Materials 435 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3
12.3.3.1
12.3.3.2
12.3.4
12.3.4.1
12.3.4.2
12.3.4.3 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 Toxicology Information 426 Safety Assessment 427 General Considerations 431 Environmental Information 432 Claim of categorical exclusion 432 Environmental Assessment (EA) 434 Polymeric Food Packaging Materials 435 Inadequacies in EAs 436 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3
12.3.3.1
12.3.3.2
12.3.4
12.3.4.1
12.3.4.2
12.3.4.3
12.3.4.4 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 Toxicology Information 426 Safety Assessment 427 General Considerations 431 Environmental Information 432 Claim of categorical exclusion 432 Environmental Assessment (EA) 434 Polymeric Food Packaging Materials 435 Inadequacies in EAs 436 Final Thoughts 437 | | 12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3
12.3.3.1
12.3.3.2
12.3.4
12.3.4.1
12.3.4.2
12.3.4.3 | Allan Bailey, Layla Batarseh, Timothy Begley and Michelle Twaroski Introduction 417 Regulatory Authority 417 Federal Food, Drug and Cosmetic Act (FFDCA) 417 National Environmental Policy Act (NEPA) 421 Premarket Safety Assessment 422 Introduction 422 Chemistry Information 422 Migrant Levels in Food 423 Packaging Information 423 Toxicology Information 426 Safety Assessment 427 General Considerations 431 Environmental Information 432 Claim of categorical exclusion 432 Environmental Assessment (EA) 434 Polymeric Food Packaging Materials 435 Inadequacies in EAs 436 Final Thoughts 437 | | 13 | Community Legislation on Materials and Articles Intended to Come into Contact with Foodstuffs 441 | |-----------|---| | 12.1 | Luigi Rossi | | 13.1 | Introduction 441 | | 13.2 | Community Legislation 442 | | 13.2.1 | Directives/Regulations Applicable to all Materials and Articles 442 | | 13.2.1.1 | Framework Directives/Regulation 442 | | 13.2.1.2 | Regulation on Good Manufacturing Practice 445 | | 13.2.2 | Directives Applicable to One Category of Materials and Articles 446 | | 13.2.2.1 | Directive on Regenerated Cellulose Film 446 | | 13.2.2.2 | Directive on Ceramics 447 | | 13.2.2.3 | Directive on Plastics Materials 448 | | 13.2.2.4 | Field of Application 448 | | 13.2.2.5 | EU List of Authorized Substances 449 | | 13.2.2.6 | Restricted Use of Authorized Substances (OML, SML, QM, and QMA) 450 | | 13.2.2.7 | Authorization of New Substances 451 | | 13.2.2.8 | Directives on the System of Checking Migration 452 | | 13.2.2.9 | Functional Barrier 454 | | 13.2.2.10 | Fat (Consumption) Reduction Factors 455 | | 13.2.2.11 | Declaration of Compliance 456 | | 13.2.2.12 | Specific Rules for Infants and Young Children 457 | | 13.2.2.13 | Special Restrictions for Certain Phthalates now Authorized at EU Level 457 | | 13.2.2.14 | Simulant for Milk and Milk Products 458 | | 13.2.2.15 | Other Complementary Community Initiatives 458 | | 13.2.3 | Directives Concerning Individual or Groups of Substances 459 | | 13.2.3.1 | Directives on Vinyl Chloride 459 | | 13.2.3.2 | Directive on MEG and DEG in Regenerated Cellulose Film 459 | | 13.2.3.3 | Directive on Nitrosamines in Rubber Teats and Soothers 459 | | 13.2.3.4 | Regulation on the Restriction of Use of Certain Epoxy Derivatives 459 | | 13.2.3.5 | Directive on the Suspension of the Use of Azodicarbonamide as Blowing Agent in Plastics 460 | | 13.2.3.6 | Regulation on Some Plasticizers in Gaskets in Lids 460 | | 13.3 | National Law and European Mutual Recognition 460 | | 13.3.1 | Future Commission Plans 462 | | 13.4 | National Legislations and Council of Europe Resolutions 462 | | 13.5 | Conclusions 462 | | 14 | Packaging Related Off-Flavors in Foods 465 Albert Baner, François Chastellain and André Mandanis | | 14.1 | Introduction 465 | | 14.2 | Sensory Evaluation 466 | | 14.3 | Identification of Off-Flavor Compounds 468 | | XIV | Contents | | |-----|--------------|--| | | 14.4
14.5 | Physical Chemical Parameters Determining Off-Flavors 469 Derivation of Threshold Concentrations of Sensory-Active Compounds 474 References 494 | | | 15 | Possibilities and Limitations of Migration Modeling 499 Peter Mercea and Otto Piringer | | | 15.1 | Correlation of Diffusion Coefficients with Plastic Properties 501 | | | 15.2 | The Partition Coefficient 511 References 521 | | | | Appendices 523 | | | | Appendix I 525 Peter Mercea | | | | References 552 | | | | Appendix II 557 | | | | References 589 | | | | Appendix III 591 | | | | A Selection of Additives Used in Many Plastic Materials 591 | Index 607