Contents

Preface	v
1. Introduction	1
I. RHEOLOGICAL PROPERTIES	3
II. THERMAL TRANSPORT PROPERTIES III. MASS TRANSPORT PROPERTIES	3 4
2. Transport Properties of Gases and Liquids	7
I. INTRODUCTION	7
II. ANALOGIES OF TRANSPORT PROCESSES	8
III. MOLECULAR BASIS OF TRANSPORT PROCESSES A. Ideal Gases	9
B. Thermodynamic Quantities	9
C. Real Gases	10 12
IV. PREDICTION OF TRANSPORT PROPERTIES OF FLUIDS	12
A. Real Gases	14
B. Liquids	16
C. Comparison of Liquid/Gas Transport Properties	18
D. Gas Mixtures	19
V. TABLES AND DATA BANKS OF TRANSPORT PROPERTIES	19
3. Food Structure and Transport Properties	29
I. INTRODUCTION	29
II. MOLECULAR STRUCTURE	29
A. Molecular Dynamics and Molecular Simulations	29
	vii

Contents

B. Food Materials Science	30
C. Phase Transitions	30
	20
D. Colloid and Surface Chemistry	31
III. FOOD MICROSTRUCTURE AND TRANSPORT PROPERTIES	32
A. Examination of Food Microstructure	32
B. Food Cells and Tissues	32
C. Microstructure and Food Processing	34
D. Microstructure and Mass Transfer	34
IV. FOOD MACROSTRUCTURE AND TRANSPORT PROPERTIES	36
A. Definitions	36
B. Food Macrostructure and Transport Properties	40
C. Determination of Food Macrostructure	45
D. Macrostructure of Model Foods	46
E. Macrostructure of Fruit and Vegetable Materials	50

4. Rheological Properties of Fluid Foods

I. INTRODUCTION	63
II. RHEOLOGICAL MODELS OF FLUID FOODS	66
A. Structure and Fluid Viscosity	66
B. Non-Newtonian Fluids	68
C. Effect of Temperature and Concentration	71
D. Dynamic Viscosity	73
III. VISCOMETRIC MEASUREMENTS	74
A. Viscometers	74
B. Measurements on Fluid Foods	78
IV. RHEOLOGICAL DATA OF FLUID FOODS	79
A. Edible Oils	79
B. Aqueous Newtonian Foods	80
C. Plant Biopolymer Solutions and Suspensions	85
D. Cloudy Juices and Pulps	89
E. Emulsions and Complex Suspensions	90
V. REGRESSION OF RHEOLOGICAL DATA OF FOODS	92
A. Edible Oils	92
B. Fruit and Vegetable Products	94
C. Chocolate	100

5. Transport of Water in Food Materials

I. INTRODUCTION	105
II. DIFFUSION OF WATER IN SOLIDS	106
A. Diffusion of Water in Polymers	107
III. DETERMINATION OF MASS DIFFUSIVITY IN SOLIDS	109
A. Sorption Kinetics	110
B. Permeability Methods	114
C. Distribution of Diffusant	118
D. Drying Methods	120
E. Simplified Methods	123
F. Simulation Method	124
G. Numerical Methods	124
H. Regular Regime Method	125
I. Shrinkage Effect	126
IV. MOISTURE DIFFUSIVITY IN MODEL FOOD MATERIALS	127
A. Effect of Measurement Method	127
B. Effect of Gelatinization and Extrusion	130
C. Effect of Sugars	133
D. Effect of Proteins and Lipids	135
E. Effect of Inert Particles	137
F. Effect of Pressure	138
G. Effect of Porosity	140
H. Effect of Temperature	141
I. Drying Mechanisms	143
V. WATER TRANSPORT IN FOODS	144
A. Mechanisms of Water Transport	144
B. Effective Moisture Diffusivity	145
C. Water Transport in Cellular Foods	146
D. Water Transport in Osmotic Dehydration	147
E. Effect of Physical Structure	150
F. Effect of Physical/Chemical Treatments	152
G. Characteristic Moisture Diffusivities of Foods	155

6. Moisture Diffusivity Compilation of Literature Data for Food Materials

I. INTRODUCTION	163
II. DATA COMPILATION	164

III. MOISTURE DIFFUSIVITY OF FOODS AS A FUNCTION OF MOISTURE CONTENT AND TEMPERATURE

7. Diffusivity and Permeability of Small Solutes in Food Systems

I. INTRODUCTION	237
A. Diffusivity of Small Solutes	237
B. Measurement of Diffusivity	239
II. DIFFUSIVITY IN FLUID FOODS	241
A. Dilute Solutions	241
B. Concentrated Solutions	242
III. DIFFUSION IN POLYMERS	243
A. Diffusivity of Small Solutes in Polymers	244
B. Glass Transition	246
C. Clustering of Solutes in Polymers	247
D. Prediction of Diffusivity	248
IV. DIFFUSION OF SOLUTES IN FOODS	251
A. Diffusivity of Salts	
B. Diffusivity of Organic Components	
C. Volatile Flavor Retention	
D. Flavor Encapsulation	258
V. PERMEABILITY IN FOOD SYSTEMS	259
A. Permeability	259
B. Food Packaging Films	261
C. Food Coatings	
D. Permeability/Diffusivity Relation	

8. Thermal Conductivity and Diffusivity of Foods

I. INTRODUCTION	
II. MEASUREMENT OF THERMAL CONDUCTIVITY	
AND DIFFUSIVITY	270
A. Thermal Conductivity	270
B. Thermal Diffusivity	273
III. THERMAL CONDUCTIVITY AND DIFFUSIVITY	
DATA OF FOODS	

A Unfrager Facelo	075
A. Unfrozen Foods	275
B. Frozen Foods	276
C. Analogy of Heat and Mass Diffusivity	276
D. Empirical Rules	279
IV. MODELING OF THERMAL TRANSPORT PROPERTIES	280
A. Composition Models	280
B. Structural Models	283
V. COMPILATION OF THERMAL CONDUCTIVITY DATA OF FOODS	289
VI. THERMAL CONDUCTIVITY OF FOODS AS A FUNCTION OF	
MOISTURE CONTENT AND TEMPERATURE	326

9. Heat and Mass Transfer Coefficients in Food Systems

I. INTRODUCTION	359
II. HEAT TRANSFER COEFFICIENTS	360
A. Definitions	360
B. Determination of Heat Transfer Coefficients	361
C. General Correlations of the Heat Transfer Coefficient	362
D. Simplified Equations for Air and Water	364
III. MASS TRANSFER COEFFICIENTS	364
A. Definitions	364
B. Determination of Mass Transfer Coefficients	365
C. Empirical Correlations	366
D. Theories of Mass Transfer	367
IV. HEAT TRANSFER COEFFICIENTS IN FOOD SYSTEMS	369
A. Heat Transfer in Fluid Foods	369
B. Heat Transfer in Canned Foods	371
C. Evaporation of Fluid Foods	372
D. Improvement of Heat/Mass Transfer	373
V. HEAT TRANSFER COEFFICIENTS IN FOOD PROCESSING:	
COMPILATION OF LITERATURE DATA	374
VI. MASS TRANSFER COEFFICIENTS IN FOOD PROCESSING:	
COMPILATION OF LITERATURE DATA	391

Appendix: Notation

Index