Contents

Preface	Xi
Introduction	xiii
PROCESSING	
Synthesis and Characterization of Ba ₃ Co ₂ Fe ₂₄ O ₄₁ and Ba ₃ Co _{0.9} Cu _{1.1} Fe ₂₄ O ₄₁ Nanopowders and Their Application as Radar Absorbing Materials Valeska d a Rocha Caffarena, Magali Silveira Pinho, Jefferson Leixas Capitaneo, Tsuneharu Ogasawara, and Pedro Augusto de Souza Lopes Cosentino	3
Microwave Enhanced Anisotropic Grain Growth in Lanthanum Hexa Aluminate-AluminaComposites Z. Negahdari, T. Gerdes, and M. Willert-Porada	15
Oxyfuel Combustion Using Perovskite Membranes E.M. Pfaff and M. Zwick	23
Synthesis of SiC Nanofibers with Graphite Powders Andrew Ritts, Qingsong Yu, and Hao Li	33
Influence of Additional Elements on Densification Behavior of Zirconia Base Amorphous Powders Tatsuo Kumagai	41
SILICON-BASED CERAMICS	
The Intergranular Microstructure of Silicon Nitride Based Ceramics	55

L.K.L. Falk, N. Schneider, Y. Menke, and S. Hampshire

PROPERTIES OF MONOLITHIC CERAMICS

Modulus and Hardness of Nanocrystalline Silicon Carbide as Functions of Grain Size Suraj C. Zunjarrao, Abhishek K. Singh and Raman P. Singh	79
Stoichiometric Constraint for Dislocation Loop Growth in Silicon Carbide	91
Sosuke Kondo, Yutai Katoh, and Akira Kohyarna	
Effects of Si:SiC Ratio and SiC Grain Size on Properties of RBSC S. Salarnone, P. Karandikar, A. Marshall, D.D. Marchant, and M. Sennett	101
Electrical Properties of AIN-SiC Solid Solutions with Additions of AI and C	111
Ryota Kobayashi, Junichi Tatarni, Toru Wakihara, Katsutoshi Korneya, and Takeshi Meguro	
FIBER-REINFORCED CMCS	
Effects of Frequency on Fatigue Behavior of an Oxide-Oxide Ceramic Composite at 1200°C G. Hetrick, M.B. Ruggles-Wrenn, and S.S. Baek	119
Post Creep/Dwell Fatigue Testing of MI SiC/SiC Composites G. Ojard, A. Calornino, G. Morscher, Y. Gowayed. U. Santhosh, J. Ahrnad, R. Miller, and R. John	135
Time-Dependent Response of MI SiC/SiC Composites Part 1: Standard Samples	145
G. Ojard, Y. Gowayed, J. Chen, U. Santhosh, J. Ahrnad, R. Miller, and R. John	
Time-Dependent Response of MI SiC/SiC Composites Part 2: Samples with Holes Y. Gowayed, G. Ojard, J. Chen, R. Miller, U. Santhosh, J. Ahrnad, and R. John	155
Effects of Environment on Creep Behavior of an Oxide-Oxide Ceramic Composite with ±45° Fiber Orientation at 1200°C G. T. Siegert, M. B. Ruggles-Wrenn, and S. S. Baek	163
Assessments of Life Limiting Behavior in Interlaminar Shear for Hi-Nic SiC/SiC Ceramic Matrix Composite at Elevated Temperature Sung R. Choi, Robert W. Kowalik, Donald J. Alexander, and Narottarn P. Bansal	179

65

Architectural Design of Preforms and Their Effects on Mechanical Property of High Temperature Composites Jae Yeol Lee, Tae Jin Kang, and Joon-Hyung Byun	191
Design Factor Using a SiC/SiC Composites for Core Component of Gas Cooled Fast Reactor. 2: Thermal Stress Jae-Kwang Lee and Masayuki Naganuma	199
Development of Novel Fabrication Process for Highly-Dense & Porous SiC/SiC Composites with Excellent Mechanical Properties Kazuya Shimoda, Joon-Soon Park, Tatsuya Hinoki, and Akira Kohyama	207
Effects of Interface Layer and Matrix Microstructure on the Tensile Properties of Unidirectional SiC/SiC Composites Masaki Kotani, Toshio Ogasawara, Hiroshi Hatta, and Takashi Isikawa	213
Tensile Properties of Advanced SiC/SiC Composites for Nuclear Control Rod Applications Takashi Nozawa, Edgar Lara-Curzio, Yutai Katoh, and Robert J. Shinavski	223
PARTICULATE REINFORCED AND LAMINATED COMPOSITES	
Influence of the Architecture on the Mechanical Performances of Alumina-Mullite and Alumina-Mullite-Zirconia Ceramic Laminates Alessandra Gostabile and Vincenzo M. Sglavo	237
Fabrication of Novel Alumina Composites Reinforced by SiC Nano-Particles and Multi-Walled Carbon Nanotubes Kaleem Ahmad and Wei Pan	245
Effect of Carbon Additions and B_4C Particle Size on the Microstructure and Properties of B_4C – TiB ₂ Composites R.C. McCuiston, J.C. LaSalvia, and B. Moser	257
Electro-Conductive ZrO ₂ -NbC-TiN Composites Using NbC Nanopowder Made By Carbo-Thermal Reaction S. Salehi, J. Verhelst, O. Van der Biest, and J. Vleugels	269
High Temperature Strength Retention of Aluminum Boron Carbide (AIBC) Composites Aleksander J. Pyzik, Robert A. Newman, and Sharon Allen	277
ENVIRONMENTAL EFFECTS	

Corrosion Resistance of Ceramics in Sulfuric Acid Environments at 289 High Temperature C.A. Lewinsohn, H. Anderson, M. Wilson, and A. Johnson

Analyzing Irradiation-InducedCreep of Silicon Carbide Yutai Katoh, Lance Snead, and Stas Golubov	297
Physico-Chemical Reactivity of Ceramic Composite Materials at High Temperature: Vaporization and Reactivity with Carbon of Borosilicate Glass Sebastien Wery and Francis Teyssandier	307
Irradiation Effects on the Microstructure and Mechanical Properties of Silicon Carbide Magalie Menard, Marion Le Flem, Lionel Gelebart, Isabelle Monnet, Virginie Basini, and Michel Boussuge	319
Oxidation of ZrB ₂ -SiC: Comparison of Furnace Heated Coupons and Self-Heated Ribbon Specimens S.N. Karlsdottir, J.W. Halloran, F. Monteverde, and A. Bellosi	327
The Role of Fluorine in Glass Formation in the Ca-Si-AI-0-N System Amir Reza Hanifi, Annaik Genson, Michael J. Pomeroy, and Stuart Hampshire	337
Wetting and Reaction Characteristics of Al ₂ O ₃ /SiC Composite Refractories by Molten Aluminum and Aluminum Alloy James G. Hemrick, Jing Xu, Klaus-Markus Peters. Xingbo Liu, and Ever Barbero	347
NDE AND TEST METHODS	
Evaluation of Oxidation Protection Testing Methods on Ultra-High Temperature Ceramic Coatings for Carbon-Carbon Oxidation Resistance	361
Erica L. Corral, Alicia A. Ayala, and Ronald E. Loehman	
Nondestructive Evaluation of Silicon-Nitride Ceramic Valves from Engine Duration Test J.G. Sun, J.S. Trethewey, N.S.L. Phillips, N.N. Vanderspiegel, and J.A. Jensen	371
Model of Constrained Sintering Kais Hbaieb and Brian Cotterell	379
FRACTURE	
Study of Factors Affecting the Lengths of Surface Cracks in Silicon Nitride Introduced by Vickers Indentation Hiroyuki Miyazaki, Hideki Hyuga, Yu-ichi Yoshizawa, Kiyoshi Hirao, and Tatsuki Ohji	391
Strength Recovery Behavior of Machined Alumina by Crack Healing Kotoji Ando, Wataru Nakao, Koji Takahashi, and Toshio Osada	399
Modeling Crack Bifurcation in Laminar Ceramics K. Hbaieb, R.M. McMeeking, and F.F. Lange	411

viii . Mechanical Properties and Pertormance of Engineering Ceramics and Composites III

Delayed Failure of Silicon Carbide Fibers in Static Fatigue at Intermediate Temperatures (500-800°C) in Air W. Gauthier and J. Lamon	423
Fracture-Toughness Test of Silicon Nitrides with Different Microstructures Using Vickers Indentation Hiroyuki Miyazaki, Hideki Hyuga, Yu-ichi Yoshizawa, Kiyoshi Hirao, and Tatsuki Ohji	433
Self-Crack-Healing Ability of Alumina/ SiC Nanocomposite Fabricated by Self-propagating High-Temperature Synthesis Wataru Nakao, Yasuyuki Tsutagawa, Koji Takahashi, and Kotoji Ando	443
Through-Life Reliability Management of Structural Ceramic Components Using Crack-Healing and Proof Test Kotoji Ando, Masato Ono, Wataru Nakao, and Koji Takahashi	449
JOINING AND BRAZING	
Joining Methods for Ceramic, Compact, Microchannel Heat Exchangers C.A. Lewinsohn. J. Cutts, M. Wilson, and H. Anderson	463
Glass-To-Metal (GTM) Seal Development Using Finite Element Analysis: Assessment of Material Models and Design Changes Rajan Tandon, Michael K. Neilsen, Timothy C. Jones, and James F. Mahoney	469
Integrative Design with Ceramics: Optimization Strategies for Ceramic/Metal Joints A. Bezold, H.R. Maier, and E.M. Pfaff	479
Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications Michael C. Halbig, Mrityunjay Singh, Tarah Shpargel, and James D. Kiser	491
Effect of Residual Stress on Fracture Behavior in Mechanical Test for Evaluating Shear Strength of Ceramic Composite Joint Hisashi Serizawa, Kazuaki Katayama, Charles A. Lewinsohn, Mrityunjay Singh, and Hidekazu Murakawa	503
Author Index	513