Contents

Preface	ix
Introduction	xi
TRANSPARENT GLASSES AND CERAMICS	
Mesomechanical Constitutive Relations for Glass and Ceramic Armor D.R. Curran, D.A. Shockey, and J.W. Simons	3
Optimizing Transparent Armor Design Subject to Projectile Impact Conditions Xin Sun, Kevin C. Lai, Tara Gorsich, and Douglas W. Templeton	15
Physics of Glass Failure during Rod Penetration D.A. Shockey, D. Bergmannshoff, D.R. Curran, and J.W. Simons	23
Adhesive Bond Evaluation in Laminated Safety Glass using Guided Wave Attenuation Measurements S. Hou and H. Reis	33
Applying Modeling Tools to Predict Performance of Transparent Ceramic Laminate Armors C.G. Fountzoulas, J.M. Sands, G.A. Gilde, and P.J. Patel	45
An Economic Comparison of Hot Pressing vs. Pressureless Sintering for Transparent Spinel Armor A. LaRoche, K. Rozenburg, J. Voyles, L. Fehrenbacher, and Gary Gilde	55
Advances in Ballistic Performance of Commercially Available Saint-Gobain Sapphire Transparent Armor Composites Christopher D. Jones, Jeffrey B. Rioux, John W. Locher, Vincent Pluen, and Matthias Mandelartz	63

Defect Free Spinel Ceramics of High Strength and High Transparency Juan L. Sepulveda, Raouf O. Loutfy, and Sekyung Chang	75
OPAQUE CERAMICS	
Recent Results on the Fundamental Performance of a Hot-Pressed Silicon Carbide Impacted by Sub-Scale Long-Rod Penetrators Jerry C. LaSalvia, Brian Leavy, Herbert T. Miller, Joshua R. Houskamp, and Ryan C. McCuiston	89
Instrumented Hertzian Indentation Study of Two Commerical Silicon Carbides H.T. Miller, R.C. McCuiston, and J.C. LaSalvia	99
Apparent Yield Strength of Hot-Pressed SiCs W.L. Daloz, A.A. Wereszczak, and O.M. Jadaan	107
Microstructural Examination and Quasi-Static Property Determination of Sintered Armor Grade SiC Memduh V. Demirbas, Richard A. Haber, and Raymond E. Brennan	119
Quantitative Characterization of Localized Amplitude Variations in Silicon Carbide Ceramics using Ultrasound C-Scan Imaging Raymond Brennan, James McCauley, Richard Haber, and Dale Niesz	129
Grain Boundary Engineering of Silicon Carbide by Means of Coprecipitation Steven Mercurio, Mihaela Jitianu, and Richard A. Haber	141
The Possible Roles of Stoichiometry, Microstructure, and Defects on the Mechanical Behavior of Boron Carbide Ryan McCuiston, Jerry LaSalvia, James McCauley, and William Mayo	153
A Review of Ceramics for Armor Applications P.G. Karandikar, G. Evans, S. Wong, M.K. Aghajanian, and M. Sennett	163
NOVEL EVALUATION AND CHARACTERIZATION	
A Portable Microwave Scanning Technique for Nondestructive Testing of Multilayered Dielectric Materials Karl Schmidt, Jack Little, and William A. Ellingson	179
Ballistic Damage Assessment of a Thin Compound Curved B₄C Ceramic Plate using XCT J.M. Wells and N.L. Rupert	191

Evaluation of Ballistically-Induced Damage in Ceramic Targets by X-Ray Computed Tomography William H. Green, Herbert T. Miller, Jerry C. LaSalvia, Datta P. Dandekar, and Daniel Casem	199
Automated Nondestructive Evaluation System for Hard Armor Protective Inserts of Body Armor Nicholas Haynes, Karl Masters, Chris Perritt, David Simmons, James Zheng, and James E. Youngberg	211
Analysis of Hardness Indentation Size Effect (ISE) Curves in Ceramics: A New Approach to Determine Plasticity Trevor E. Wilantewicz and James W. McCauley	219
Author Index	229

•