CONTENTS

PREFACE		ix
1	GLASS FORMATION	1
	1.1 General Aspects	1
	1.2 Glass Formers	5
	1.3 Atomistic Hypotheses of Glass Formation	9
	1.4 Kinetic Approach to Glass Formation	13
2	PHASE TRANSFORMATIONS IN GLASS	16
	2.1 Crystallization	17
	2.2 Liquid-Liquid Phase separation	29
	2.3 Glass-Ceramics	41
3	PHYSICAL PROPERTIES	51
	3.1 Density of Glasses	51
	3.2 partial Molar Volume of Constituent Oxides in Glasses and Melts	56
	3.3 Refractive Index of Glasses	63
	3.4 Thermal Expansion of Glasses	67
	3.5 Viscosity of Glasses	76
	3.6 Surface Tension of Glasses	85
	3.7 Electrical Properties of Glasses	89
4	CHEMICAL DURABILITY OF GLASS	108
	4.1 Mechanism of Reactions of Glasses with Aqueous Solution	109
	4.2 Factors Affecting Chemical Durability Measurements of a Glass	113
	4.3 Effect of Glass Composition	117
	4.4 Effect of pH of the Solution on Chemical Durability of Sio2 (quartz)	120
	4.5 Solubility of Silica in Aqueous Solutions	125
	4.6 Glass Electrodes	139
5	OXIDATION – REDUCTION EQUILIBRIUM IN GLASS	148
	5.1 General	148
	5.2 Activity Corrections	155
	5.3 Oxidation – Reduction in Glass	157
	5.4 Theory of Redox Reactions in Solution	168

6	ACID – BASE CONCEPTS IN GLASS	174
	6.1 Introduction	174
	6.2 Acid – Base Relationships in Glasses	176
	6.3 Oxygen Ion Activity	178
	6.4 Transition Metal Ions as Acid – Base Indication in Glass	183
	6.5 Oxidation – Reduction Equilibrium in Glass	196
	6.6 Filled Shell Ions with ns2 Configuration as an Acid – Base Indicator in Glass	198
	6.7 Vanadyl Ion as an Acid – Base Indicator in Glass	200
7	COLOURED GLASSES	204
	7.1 Atomic Structure and the Periodic Classification of Transition Metals	204
	7.2 Theories of Chemical Bonding in Transition Metal Complexes	205
	7.3 Application of Bonding Theories in Interpreting d – d Absorption Spectra	228
	7.4 Absorption Spectra of Transition Metal Ions	233
	7.5 Charge – Transfer Bands	243
	7.6 Anionic Substitution in Glass	251
	7.7 Photosensitive Glasses	259
	7.8 Copper Ruby Glasses	264
	7.9 Measurement of Colour, Colour Diagram and Tristimulus Values	270
8	POLYMERIC NATURE OF GLASS MELTS	277
IN	DEX	292