CONTENTS

PART I: THE SCIENCE OF COLLOIDAL PROCESSING

Interfacial Electrochemistry of Disperse Systems	1
How Colloid Stability Affects the Behavior of Suspensions	25
Formation and Stability of Colloidal Dispersions of Fine Particles in Water	45
Flocculation and Filtration of Colloidal Particles	59
The Science of the Interactions of Colloidal Particles and Ceramics Processing	71
Preparation of Shaped Glasses Through the Sol-Gel Method	83
Inorganic Oxide Gels and Gel-Monoliths: Their Crystallization Behavior	95
Boron Nitride Fiber Synthesis from Boric Oxide Precursors	111

PART II: NOVEL POWDER-FORMING AND POWDER-PROCESSING METHODS

Some Common Aspects of the Formation of Nonoxide Powders by the Vapor Reaction Method	123
Synthesis of Powders and Thin Films by Laser Induced Gas Phase Reactions	137
Preparation of Zirconia-Alumina Fine Powders by Hydrothermal Oxidation of Zr-Al Alloys	155
Combustion Synthesis of Transition Metal Nitrides	167
The Influence of Powder Synthesis Techniques on Processes Occurring During Compact	
Formation and its Sintering	177
Dispersion and Packing of Narrow Size Distribution Ceramic Powders	193
Plasma Sintering of Ceramics	207
Plasma Melting of Selected Compositions in the Al2O3-ZrO2-SiO2 System	213
Liquid Phase Sintering of Ceramics	225
Precision Digital Dilatometry: A Microcomputer-Based Approach to Sintering Studies	233

PART III: CERAMICS DERIVED BY POLYMER PROCESSING

The Conversion of Methylchloropolysilanes and Poly-disilylazanes to Silicon Carbide and	
Silicon Carbide/Silicon Nitride Ceramics, Respectively	253
Silicon-Nitrogen Polymers and Ceramics Dervied from Reactions of Dichlorosilane, H2SiCl2	263
Formation of Ceramic Composites and Coatings Utilizing Polymer Pyrolysis	271
Gas Analysis During the Pyrolysis of Carbosilane	287

PART IV: CHEMICAL VAPOR DEPOSITION

Chemical Vapor Deposition of Ceramic Materials	299
The Application of Thermodynamic Calculations to Chemical vapor Deposition Processes	317
CVD of Si3N4 and its Composites	329
Preparation of Amorphous Si3N4-BN Composites by Chemical Vapor Deposition	347
A Morphological Study of Silicon Borides Prepared by CVD	359

A Morphological Study of Silicon Carbide Prepared by Chemical Vapor Deposition	371
Low-Temperature Preparation of Pyrolytic Carbon	381
Laser Chemical Vapor Deposition (LCVD)	397

PART V: ION BEAM DEPOSITION

Ion Beam Techniques for the Deposition of Ceramic Thin Films	415
Ionized-Cluster Beam Deposition and Epitaxy	425
Ion Beam Deposition of Ceramic-Like Coatings	447

PART VI: LASER AND ION BEAM MODIFICATION OF SURFACES

Laser Surface Melting of Metals and Alloys	461
Laser Processing of Ceramics	473
Microstructural Analysis of Rapidly Solidified Alumina	505
Structure of Ceramic Surfaces Modified by Ion Beam Techniques	519
Microstructure and Mechanical Properties of Ion-Implanted Ceramics	533
Microhardness of N-Implanted Yttria Stabilized ZrO2	549

PART VII: HOT ISOSTATIC PRESSING

Hot Isostatic Pressing of Ceramic Materials	559
Dense Ceramic Parts Hot Pressed to Shape by HIP	571
Fabrication of Si3N4 Ceramics with Additives of Metal Nitrides by High Pressure	
Hot-Pressing and HIPing	583
Diffusion Bonding of Al2O3 and Si3N4 Ceramics by HIPing	591
Relationship Between Densification and High Temperature Mechanical Properties of	
HIPed Silicon Nitride	597
Microstructural Changes During Hot Isostatic Pressing of Sintered Lead Zirconate Titanate	609

PART VIII: DYNAMIC COMPACTION

Dynamic Compaction of Powders	621
Dynamic Compaction of Ceramic Powders	639
Explosive Consolidation of Aluminum Nitride Ceramic Powder: A Case History	657
Computer Simulation of Dynamic Compaction	673
Investigation of a Method to Consolidate Hard Materials in a Tough Matrix	695

PART IX: SHOCK SYNTHESIS: SHOCK CONDITIONING AND SUBSEQUENT DENSIFICATION

Modern Uses of Explosive PressurFrom Rock Blasting to Synthetic Diamond	711	
Shock-Induced Modification of Inorganic Powders	719	
Densification Kinetics of Shock-Activated Nitrides	735	
Rate Controlled Sintering of Explosively Shock-Conditioned Alumina Powders	749	

PART X: VERY HIGH PRESSURE PROCESSING

High Pressure Processing of High Technology Ceramics	765
Diamond Anvil Cell Technology for P,T Studies of Ceramics: ZrO2 (8 mol% Y2O3)	783
Effect of Strong Shock Compression on Covalent Materials and High Pressure Sintering	793
A New Approach to the Reaction Sintering of Superhard Materials Under Very High Pressure	809
ADVISCORY COMMITTEE	821
CONTRIBUTORS	823

INDEX 833