Ref. 666 CHE

CONTENTS

PA	RT 1: SOL-GEL SCIENCE: SILICA	1
1.	The Nanostructure of Aerogels: Preparation, Investigations, Modifications, and Utilizations	3
2.	A Sol-Gel Route to Very High Porosity Silica Aerogels	19
3.	Macropore Morphology Control of Silica Gel by Spinodal Decomposition	29
4.	Kinetics and Equilibrium of Acid-catalyzed Tetraethoxysilane Hydrolysis	43
5.	Rheological Investigation of the Sol-to-Gel Transition in Acid-Base Systems	51
6.	Silicon-29 Nuclear Magnetic Resonance Study of Sol-Gel Transformation in First Steps and	
	after Gel Time	59
7.	Structural Analysis of Silica Gels during Densification Using Raman Spectroscopy	69
8.	Ultrastructural Models	77
9.	Nuclear Magnetic Resonance Studies of the Sol-Gel Process	93
10.	Adsorption and Diffusion of Small Molecules in Porous Sol-Gel Glass	103
11.	Restricted Diffusion of Chromium lons within Stabilized Sol-Gel Silica Glasses	115
12.	Electron Paramagnetic Resonance of Nitroxide Spin Probe Solutions: An Emerging Technique	ue
	for Studying Porous Materials	123
13.	Structural Studies of Gel Phases (3): A Near-Infrared Spectroscopic Study of Silica and	
	Silica-Titania Gel Glasses	131
14.	Characterization of Silicon Sesquioxide and Thermal Behavior of Hydrosilsesquioxane Gels	143
15.	Raman Spectroscopy and Molecular Orbital Studies of the Stability of Trisiloxane Rings to	
	Water	159

PART 2: SOL-GEL SCIENCE: VARIOUS OXIDE AND MULTICOMPONENT

	SYSTEMS	173
16.	Preparation and Characterization of Gels of SiO2-Al2O3 Composition	175
17.	Preparation and Characterization of Sn-Si-O Gels	187
18.	Solid-State29Si and 7 Li Nuclear Magnetic Resonance Spectroscopic Studies of Lithium	
	Aluminosilicate Gels	197
19.	Aluminum Oxoalkoxide: A Novel Aluminum Cluster Compound, (AlOBu)2[Al(OBu)2]2	
	(µ2-OBu)5(u4-O)	207
20.	Raman Spectroscopy of Phosphorus-dope Silica Gels	215
21.	Inorganic Polymerization in Aqueous Solutions	223
22.	Heterometallic Acetatoalkoxides Based on Niobium as Precursors to Multicomponent	
	Oxides	239
23.	Peptization of Hydrous Titania	247
24.	Oxygen-17 Nuclear Magnetic Resonance Spectroscopic Study of Titania Sol-Gel	
	Polymerization	257

25.	Tailoring of Cerium (IV) Oxide Precursors through Modification of Cerium (IV) Isopropoxide				
	with β -Diketones	267			
26.	Tailoring Metal Alkoxides Using Functional Alcohols: Some Examples in Yttrium and Main	-			
	Group Chemistry (Bismuth, Barium)	277			
27.	Preparation, Characterization, and Gelation Kinetics of Alkoxide-derived Gadolinium Oxide	285			
PA	PART 3: SOL-GEL APPLICATIONS 295				
28.	Molecular-Chemical Approach to High-Tc Superconductors	297			
29.	A Superfine Ceramics Technology Directed toward New High-Tc Superconductors	315			
30.	New Group 2 Organometallic Precursors to Metal Oxides	327			
31.	Ultrastructure of Gels Made from Nitrates in the System (Bi,Pb)-Sr-Ca-Cu-O	333			
32.	Optical and Thermal Properties of Silica Aerogels	341			
33.	Inorganic Aerogels by Sol-Gel Processing	349			
34.	Silica Aerogels by Sol-Gel Processing	355			
D 4 1		262			
PA.	RT 4: THIN FILMS AND COATINGS	363			
35.	Oltrastructure Processing of Thin Crystalline Films	365			
36. 27	Size Effects in Ferroelectric Thin Films	379			
37.	Sol-Gel Thin-Film Formation	395			
38.	Characterization of Alkoxide Carboxylates: From Precursor to Cast Film	415			
39.	Stabilization and Characterization of Niobium and Tantalum Oxide Sols Prepared Via				
	Alkoxide Routes: Optical Applications for High-Power Lasers	423			
40.	Importance of Sol-Gels to Modern Large Telescopes	431			
41.	Preparation of Interference Filters Using Low-Temperature Sol-Gel Processing	437			
42.	Localized Laser Annealing of PT/PZT Films Based on Metallo-Organics in Aqueous Micella	r			
	Solutions	449			
43.	Sol-Gel-derived Coatings for Electrical and Optical Applications	457			
44.	Sol-Gel Processing of Passive Components for Integrated Optics	467			
45.	Wet Chemical Synthesis of Optical Films	483			
PA	RT 5: MICROMORPHOLOGY SCIENCE	497			
46.	Molecular Precursors for the Chemical Processing of Advanced Electrical Ceramics	499			
47.	Control of Powder Morphology	513			
48.	Synthesis of Ceramic Ultrastructures Utilizing Biologic Processes	529			
49.	Synthetic and Biological Nanocomposites	543			
50.	Processing of Composite Powders: Fabrication of Ceramics and Composites by Viscous				
	Sintering and Transient Viscous Sintering	557			
51.	Preparation of Zircon and Mullite-Zircon Powders by Sol-Gel Techniques	577			
52.	Organic Gels in the Preparation of Silicate Powders: Examples of Mullite and Cordierite	585			

53.	Synthesis of AIN Powder from Alumina Gel Containing Residual Organic Matter Entrapped				
	by Sol-Gel Method	595			
54.	X-Ray Photoelectron Spectroscopy Investigation of Hydrothermal and Commercial Barium				
	Titanate Powders	603			
55.	Liquid Precursors for Ceramics: Kinetically Limited Crystallization, Spherical Particles,				
	Fibers, and Thin Films	611			
56.	Effects of Structure and Surface Area on Bioactive Powders Made by Sol-Gel Process	627			
PA	PART 6: ULTRASTRUCTURAL POLYMERS 635				
57.	Multifunctional Polymers	637			
58.	Developments in the Synthesis of Polyarylene Vinylenes	647			
59.	Chemicals, Polymers, and Ceramics from the Beach (Silica)	663			
60.	Organic Aerogels: A New type of Ultrastructured Polymer	671			
61.	High-Compressive-Strength Articulated PBZT Fibers	685			
PA	PART 7: CHEMICALLY PROCESSED FIBERS AND COMPOSITES 697				
62.	Material Synthesis at the Boundary between Polymer Chemistry and Ceramic Science	699			
63.	Microwave Syntheses of Materials and Their Precursors	717			
64.	Processing and Optical Properties of Inorganic-Organic Composites	727			
65.	Polyaniline-Ormosil Nanocomposites	737			
66.	Siloxane-Silica Composites Prepared by Sol-Gel Technique with Hydrolysis Water Generated	d			
	In Situ	745			
67.	Ceramic Composites from Organometallic Precursors	753			
68.	Nanocrystalline Silicon Carbide Fibers Derived from Organosilicon Polymers	767			
69.	Silicon Carbide-Aluminum Nitride Solid Solutions by Pyrolysis of Organometallics	777			
70.	Preparation of SiC-Cordierite Composites	791			
71.	Low-Temperature Glass-Polymer Blends	799			
72.	Novel Ti-PTMO and Zr-PTMO Hybrid Ceramer Materials By Sol-Gel Processing	807			
73.	Thermal Properties of PMMA-impregnated Silica Gels	815			
PA	RT 8: ADVANCED OPTICAL MATERIALS	823			
74.	A New Class of Sol-Gel Processed Inorganic Oxide: Organic Polymer Composites for				
	Nonlinear Optics and Photonics	825			
75.	Nonlinear Optical Behavior of Glass and Quantum Clusters in Glass	837			
76.	Nanomodulated Ceramic Superlattices by Electrodeposition	855			
77.	Graded Refractive Index Materials Via Sol-Gel Processing	863			
78.	Sol-Gel Processing of Net Shape and Multifunctional Optics	875			
79.	Characterization of Type VI Porous Gelsil	891			
00					
80.	Gas Permeability in Porous Gel Silica	897			

82. Laser Methods of Control of Porous Silica Glass Structure	919
83. Fabrication of Microlenses by Laser Densification on Gel Silica Glass	933
84. Spectroscopy and Laser Behavior of Rhodamine-doped ORMOSILs	941
85. Lasing Characteristics of a Porous Gel Silica Matrix with 4PyPO-MePTS Laser Dye	953
86. Absorption Recovery of Malachite Green Doped Xerogel	965
87. Synthesis of Neodymium-Aluminum Doped Silica Xerogels	973
88. Synthesis and Characterization of a Five-Component Amorphous Hydrous Oxide ZBLAN	
Gel for Fluoride Glasses	981
89. Aerogel Composites for Radioluminescent Light/power Sources	989
90. Lasers and Ultrastructure Processing	997
PART 9: FUTURE DIRECTIONS	1021
91. Solution-Sol-Gel Technology and Science: Past, Present and Future	1023
Author Index	1034
Subject Index	1037