CONTENTS

1.	INT	TRODUCTION TO RHEOLOGY	1
	1.1	What is Rheology?	1
	1.2	Why Rheological Properties are Important	3
	1.3	Stress as a Measure of Force	3
	1.4	Strain as a Measure for Deformation	6
	1.5	Rheological Phenomena	10
	1.6	Why Polymeric Liquids are Non-Newtonian	19
	1.7	A Word About Tensor?	22
	1.8	The Stress Tensor	25
	1.9	A Strain Tensor for Infinitesimal Deformations	31
	1.10	The Newtonian Fluid	36
	1.11	The Basic Equations of Fluid Mechanics	37
	Refe	erences	41
2.	LINEAR VISCOELASTICITY		
	2.1	Introduction	42
	2.2	The Relaxation Modulus	43
	2.3	The Boltzmann Superposition Principle	44
	2.4	Relaxation Modulus of Molten Polymers	48
	2.5	Empirical Equations for the Relaxation Modulus	51
	2.6	The Relaxation Spectrum	54
	2.7	Creep and Creep Recovery; The Compliance	55
	2.8	Small Amplitude Oscillatory Shear	60
	2.9	Determination of Maxwell Model Parameters	70
	2.10	Start-Up and Cessation of Steady Simple Shear and Extension	72
	2.11	Molecular Theories: Prediction of Linear Behavior	74
	2.12	2 Time-Temperature Superposition	86
	2.13	3 Linear Behavior of Several Polymers	94
	Refe	erences	100
3.	INTRODUCTION TO NONLINEAR VISCOELASTICITY		103
	3.1	Introduction	103
	3.2	Nonlinear Phenomena	105
	3.3	Theories of Nonlinear Behavior	106
	3.4	Finite Measures of Strain	108
	3.5	The Rubberlike Liquid	114

	3.6	The BKZ Equation	127	
	3.7	Wagner's Equation and the Damping Function	128	
	3.8	Molecular Models for Nonlinear Viscoelasticity	146	
	3.9	Strong Flows; The Tendency to Stretch and Align Molecules	150	
	Refe	erences	151	
4.	STEADY SIMPLE SHEAR FLOW AND THE VISCOMETRIC FUNCTIONS			
	4.1	Introduction	153	
	4.2	Steady Simple Shear Flow	153	
	4.3	Viscometric Flow	155	
	4.4	Wall Slip and Edge Effects	158	
	4.5	The Viscosity of Molten Polymers	158	
	4.6	The First Normal Stress Difference	170	
	4.7	Empirical Relationships Involving Viscometric Functions	173	
	Refe	erences	176	
5.	TRA	ANSIENT SHEAR FLOWS USED TO STUDY NONLINEAR VISCOELASTICITY	179	
	5.1	Introduction	179	
	5.2	Step Shear Strain	181	
	5.3	Flows Involving Steady Simple Shear	194	
	5.4	Nonlinear Creep	206	
	5.5	Recoil and Recoverable Shear	210	
	5.6	Superposed Deformations	217	
	5.7	Large Amplitude Oscillatory Shear	219	
	5.8	Exponential Shear; A Strong Flow	225	
	5.9	Usefulness of Transient Shear Tests	228	
	Refe	erences	228	
6.	EXT	FENSIONAL FLOW PROPERTIES AND THEIR MEASUREMENT	231	
	6.1	Introduction	231	
	6.2	Extensional Flows	232	
	6.3	Simple Extension	237	
	6.4	Biaxial Extension	260	
	6.5	Planar Extension	263	
	6.6	Other Extensional Flows	265	
	Refe	erences	266	

7.	RO	TATIONAL AND SLIDING SURFACE RHEOMETERS	269
	7.1	Introduction	269
	7.2	Sources of Error for Drag Flow Rheometers	270
	7.3	Cone-Plant Flow Rheometers	277
	7.4	Parallel Disk Rheometers	283
	7.5	Eccentric Rotating Disks	284
	7.6	Concentric Cylinder Rheometers	285
	7.7	Controlled Stress Rotational Rheometers	286
	7.8	Torque Rheometers	287
	7.9	Sliding Plate Rheometers	287
	7.10	O Sliding Cylinder Rheometers	294
	Ref	Perences	294
8.	FLOW IN CAPILLARIES, SLITS AND DIES		
	8.1	Introduction	298
	8.2	Flow in a Round Tube	298
	8.3	Floe in a Slit	307
	8.4	Pressure Drop in Irregular Cross Sections	317
	8.5	Entrance Effects	317
	8.6	Capillary Rheometers	324
	8.7	Flow in Converging Channels	329
	8.8	Extrudate Swell	332
	8.9	Extrudate Distortion	336
	References		341
9.	. RHEO-OPTICS AND MOLECULAR ORIENTATION		
	9.1	Basic Concepts—Interaction of Light and Matter	345
	9.2	Measurement of Birefringence	353
	9.3	Birefringence and Stress	358
	Ref	Perences	363
10	. EFI	FECTS OF MOLECULAR STRUCTURE	365
	10.1 Introduction and Qualitative Overview of Molecular Theory		365
	10.2 Molecular Weight Dependence of Zero Shear Viscosity		368
	10.3 Compliance and First Normal Stress Difference		370
	10.4 Shear Rate Dependence of Viscosity		374
	10.5	5 Temperature and Pressure Dependence	381
	10.6 Effects of Long Chain Branching		386
	Ref	erences	389

11. RHEOLOGY OF MULTIPHASE SYSTEMS	390
11.1 Introduction	390
11.2 Effect of Rigid Fillers	390
11.3 Deformable Multiphase Systems (Blends, Block Polymers)	401
References	408
12. CHEMORHEOLOGY OF REACTING SYSTEMS	410
12.1 Introduction	410
12.2 Nature of the Curing Reaction	411
12.3 Experimental Methods for Monitoring Curing Reactions	413
12.4 Viscosity of the Pre-gel Liquid	418
12.5 The Gel Point and Beyond	419
References	421
13. RHEOLOGY OF THERMOTROPIC LIQUID CRYSTAL POLYMERS	424
13.1 Introduction	424
13.2 Rheology of Low Molecular Weight Liquid Crystals	426
13.3 Rheology of Aromatic Thermotropic Polyesters	431
13.4 Relation of Rheology to Processing of Liquid Crystal Polymers	437
References	439
14. ROLE OF RHEOLOGY IN EXTRUSION	441
14.1 Introduction	441
14.2 Analysis of Single Screw Extruder Operation	446
14.3 Mixing, Devolatilization and Twin Screw Extruders	480
References	489
15. ROLE OF RHEOLOGY IN INJECTION MOLDIGN	490
15.1 Introduction	491
15.2 Melt Flow in Runners and Gates	492
15.3 Flow in the Mold Cavity	494
15.4 Laboratory Evaluation of Molding Resins	500
15.5 Formulation and Selection of Molding Resins	506
References	507
16. ROLE OF RHEOLOGY IN BLOW MOLDING	509
16.1 Introduction	509
16.2 Flow in the Die	510
16.3 Parison Swell	512
16.4 Parison Sag	519

16.5 Parison Inflation	521
16.6 Blow Molding of Engineering Resins	522
16.7 Stretch Blow Molding	523
16.8 Measurement of Resin Processability	524
References	529
17. ROLE OF RHEOLOGY IN FILM BLOWING AND SHEET EXTRUSION	530
17.1 The Film Blowing Process	531
17.2 Flow in the Extruder and Die; Extrudate Swell	536
17.3 Melt Flow in the Bubble	540
17.4 Bubble Stability	
17.5 Sheet Extrusion	
References	
18. ON-LINE MEASUREMENT OF RHEOLOGICAL PROPERTIES	557
18.1 Introduction	557
18.2 Types of On-Line Rheometers for Melts	558
18.3 Specific Applications of Process Rheometers	563
References	565
19. INDUSTRIAL USE OF RHEOMETERS	567
19.1 Factors Affecting Test and Instrument Selection	567
19.2 Screening and Characterization	573
19.3 Resin Selection and Optimization and Process problem Solving	585
19.4 Rheological Quality Control Tests	595
References	599