Contents

1	Princ	iples of Mold Design	_
	1.1	Types of Injection Molds	1
	1.2	Types of Runners and Gates	2
		1.2.1 Solidifying Systems	2
		1.2.2 Hot-Runner Systems	4
		1.2.3 Cold-Runner Systems	5
	1.3	Temperature Control in Injection Molds	5
	1.4	Types of Ejectors	5
	1.5	Types of Undercuts	6
	1.6	Special Designs	6
		1.6.1 Molds with Fusible Cores	ő
		1.6.2 Prototype Molds of Aluminum	ő
		1.6.3 Prototype Molds of Plastics	6
	1.7	Standard Mold Components	7
	1.8	Status of Standardization	7
		1.8.1 Standard Components	7
		1.8.2 Injection Mold for Producing Test Specimens of Thermoplastic Resins	7
	1.9	Material Selection	7
		1.9.1 General	7
		1.9.2 Tool Steels	8
		1.9.2.1 Case-Hardening Steels	9
		1.9.2.2 Heat-Treatable Steels	9
		1.9.2.3 Through-Hardening Steels	9
		1.9.2.4 Corrosion-Resistant Steels	9
	1.10	Surface Treatment Methods	9
		1.10.1 Nitriding	9
		1.10.2 Carburizing	10
		1.10.3 Hard Chrome Plating	10
		1.10.4 Hard Nickel Plating	10
		1.10.5 Hardcoating	10
	1.11	Special Materials	11
		1.11.1 High-Temperature Molybdenum Alloy	11
		1.11.2 Metal-Carbide	
		1.11.3 Materials with High Thermal Conductivity	
	1.12	Molds for Processing Thermosets	
		1.12.1 Mold Construction	11
		1.12.2 Part-Forming Surfaces	12
		1.12.3 Ejection/Venting	12
		1.12.4 Heating/Insulation	12
		1.12.5 Runner/Gate Design	12
	1.13	Molds for Processing Elastomers	14
•	G		
2	Specia	al Design Features of the Mold Examples	17
3	Exam	ples	20
	2.1	Similar Oracity Infrastion Model from Data of the O	•
	2.1	Single-Cavity Injection Iviola for a Cloge Elber Deinferred Debenit. There is in	20
	5.2	Two-Cavity Unscrewing word for a Glass-Fiber-Keinforced Polyamide Infeaded	22
	2 2	Investion Mold for the Rody of a Tana Constant Holder Mode from II-1 Invest	22
	5.5	Delustriane	24
	21	FOLYSLYTCHE.	24
	3.4 2.5	Five-Cavity Injection Mold for a Delyamida Laint Flammet	26
	3.5	Your-Cavity Injection Mola for a Polyamide Joint Element	28
	3.0 2.7	Two Covity Potenty Core Mold for a Debugget Dire Ethern	30
	3.1 20	Hot Dunner Injection Mold for Car Front Fonder	32
	J.0 2.0	Interview Mold for Magnifiting Class France with Handle	30
	3.7	injection word for waginging Glass Frame with Handle	58

3.10	Two-Cavity Injection Mold for a Glue Dispenser Made from High-Density Polyethylene
3.11	Four-Cavity Injection Mold for a Housing Made from Acrylonitrile-Butadiene-Styrene (ABS)
3 12	Four-Cavity Injection Mold for a Nozzle Housing Mode from Polyamide
3 1 2	Single split Cavity Mold for a Threaded Dive Mode from Debracket (DOA)
2.14	Made noin Foryacetal (FOM)
3.14	Notaring a Container with External Undercuts
3.15	injection Mold with Reduced Opening Stroke for Milk Crates
3.16	Two-Cavity Injection Mold for Recessed Refrigerator Handles Made from Polyamide
3.17	Injection Mold for a Grass Catcher Made from Polypropylene
3.18	Injection Mold for Hose Connectors Made from Polyamide 6.6
3.19	Two-Cavity Injection Mold for the Coil Form of an Auxiliary Relay
3.20	Two-Cavity Injection Mold for a Housing Made from Polypropylene
3.21	Four-Cavity Injection Mold for Producing a Thrust Screw Made from Polyacetal
3.22	Mold for a Pump Housing and Pump Piston Made from Polyacetal
3 23	Hot Runner Injection Mold for Two Film Spools Made from High Impact Polystrange
3.25	Injection Mold for on Angle Sitting
2.25	Mold for Duckings with Concerned Caking
3.25	Note for businings with Concealed Gating.
3.20	Injection Mold for the valve Housing of a Water-Mixing Tap Made from Polyacetal
3.27	Mold for a Lid with Three Threads Made from Polyacetal
3.28	Iwo-Cavity Injection Mold for Coupling Sleeves Made from Polyamide
3.29	Injection Mold for the Housing of a Polypropylene Vegetable Dicer
3.30	Two-Cavity Injection Mold for a Polypropylene Toy Tennis Racket
3.31	Two Injection Molds with Two-Step Ejection Process
3.32	Injection Mold for a Polypropylene Container with a Threaded Neck
3.33	Three-Plate Injection Mold with Stripping Device for a Precision Magazine
3.34	Three-Cavity Injection Mold for a Cosmetic Cream Container with a Threaded Lid
3 35	Mold for a Polyamide V-Belt Pulley
3 36	8 + 8-Cavity Hot Runner Stack Mold for Vorburt Curs Made from Polymonylang
3 37	2 + 2-Cavity Stack Mold for Covery Mode for Polynomiano
2 29	2 + 2-Cavity Stack Mold for a Cost Made from Polypropylete
2 20	For a cavity stack more for a case made from polyplopylene.
3.39	from Polypropylene
3.40	Hot-Runner Stack Mold for a Water Distribution Block Made from Polypropylene 106
3.41	8 + 8-Cavity Stack Mold for Lozenge Box Made from Polystyrene
3.42	Two-Cavity Injection Mold for a Back Light Casing Made from ABS
3.43	2 + 2-Cavity Stack Mold with a Hot-Runner System for Runnerless Molding of
	Polystyrene Container Lids Using Direct Edge Gating
3 44	4 + 4-Cavity Hot-Runner Stack Mold for Dessert Curs Made from Polymonylene
3 45	Hot Runner Mold for Runner Fascia Made from Thermoplestic Flast mer
3 46	Four Cavity Hot Pumper Mold for Threaded Covers Mode Sear SAN
2 47	Two Cavity Hor-Kumer Mold for The Deale Mode from APS
3.41	Two-Cavity Hot-Runner Mold for Trim Bezels Made from ABS
3.40	Four-Cavity Hot-Runner Mold for Control Flap Made from Polyacetal Copolymer 130
3.49	64-Cavity Hot-Kunner Mold for Seals Made from Thermoplastic Elastomer (TPE) 132
3.50	Eight-Cavity Hot-Runner Mold for PP Toothpaste Dispenser
3.51	Two-Cavity Hot-Runner Mold for Tubs Made from Polyethylene
3.52	Two-Cavity Hot-Runner Mold for Production of Connectors Made from Polycarbonate . 138
3.53	Four-Cavity Hot-Runner Unscrewing Mold for Cap Nuts Made from Polyacetal (POM) 140
3.54	Four-Cavity Hot-Runner Mold with a Special Ejector System for a Retainer Made from
	Polypropylene
3.55	2×16 Cavity Two-Component Injection Mold for Microswitch Covers Made from
	Polyamide and Thermoplastic Elastomer
3.56	32-Cavity Hot-Runner Mold for Production of Packings Made from Polyethylene 150
3.57	12-Cavity Hot-Runner Mold with Edge Gates for Bushings Made from Polyacetal
-	Copolymer
3.58	Hot-Runner Mold for a Polycarbonate Sight Glass
3 50	Two-Component Injection Mold for Drink Can Holders Made from Delymonylane and
2.22	Fthylene-Pronylene Ternolymer
3 60	Hot-Runner Mold for Polymonylane Clamping Ding with Internal Understation of the
5.00	Circumference
2 6 1	Investion Mold for Compact Diago Mode from D-1
5.01	mjection molu for Compact Discs made nom Polycardonate

3.62	Single-Cavity Injection Compression Mold for a Cover Plate Made from Unsaturated	
	Polyester Resin.	164
3.63	Two-Cavity Injection Compression Mold for a Housing Component Made from a	
	Thermosetting Resin	166
3.64	Injection Compression Mold for a Plate Made from Melamine Resin	168
3.65	Five-Cavity Unscrewing Mold for Ball Knobs Made from a Thermoset Resin	169
3.66	Four-Cavity Injection Mold for a Thin-Walled Housing Made from a Thermosetting Resin	170
3.67	Thermoset Injection Mold for a Bearing Cover	173
3.68	Eight-Cavity Injection Mold for Manufacturing Bellows Made from Silicone Rubber	176
3.69	Two Injection Molds for Overmolding of Polyamide Tubing for Automobile Power	
	Window Operators	178
3.70	Single-Cavity Injection Mold for a Housing Base Made from Polycarbonate	180
3 71	Connector of Glass-Fiber-Reinforced Polyamide with Opposing Female Threads	182
3 72	Cylindrical Thermonlastic Container with Reduced-Diameter Opening – A Study in Part	102
5.75	Palease	184
3 73	Single-Cavity Injection Mold for a Lighting Eixture Cover Made from	
5.15	Single-Cavity injection work for a Lighting Private Cover Made nom	186
2 74	Injoint Mold for a Housing of Polycorbonate with a Thread Incert	188
2.74	Mold for Long This Tubular Date Made from Polystrane	100
3.75	Mold for Long, 1 min, 1000ar Parts Made from Polystytele	102
3.70	msulated Rumer Wold for Times Specifican Distance from Polystyletic	104
3.77	Single-Cavity injection Mold for a Polypropylene Entergency Button.	194
3.78	Eight-Cavity Injection Mold for Battery Caps with Undivided External Inread and	104
	Sealing Cone.	190
3.79	Injection Mold for a Curved Pouring Spout	198
3.80	Injection Mold for an ABS Spectacle Frame	200
3.81	Two-Cavity Injection Mold for a Cover Made from Glass-Fiber Reinforced Polyamide	202
3.82	Two-Cavity Two-Component Injection Mold for a PC/ABS Bezel with a PMMA Window.	204
3.83	Two-Cavity Injection Mold for Runnerless Production of Polycarbonate Optical Lenses	206
3.84	Injection Mold with Hydraulic Core Pull for a Cable Socket	208
3.85	Eight-Cavity Hot-Runner Injection Mold for Polyethylene Caps	210
3.86	Four-Cavity Injection Mold for Pipets	212
3.87	Two-Cavity Mold for Water Tap Handles	214
3.88	Two-Cavity Injection Mold for the Automatic Molding of Conveyor Plates onto a Wire	
	Cable	216
3.89	20-Cavity Hot-Runner Mold for Producing Curtain-Ring Rollers Made from Polyacetal	
0.07	Copolymer	218
3.90	Injection Mold with Attached Hydraulic Core Pull for Automatic Measuring Tube	
0170	Production	220
3 91	Three-Cavity Injection Mold for Liquid-Measuring Cylinders	222
3.92	24-Cavity Hot-Bunner Injection Mold for Polyacetal Spool Cores	224
3 03	Two-Cavity Hot-Runner Mold for Loudsneaker Covers Made from Polyacetal	226
3.04	Intercently inter-tennet hold to Educate Device made new respected interview	228
3.05	Molds for Manufacturing Ontical Lenses	230
2.95	Two Covity Injection Mold for a Polycarbonate Steam Iron Reservoir Insert	232
2.07	Injection Mold with Braumotic Spring Bushing for a Headlight Housing Made from	232
5.91	Delementario	235
2 00	Folypiopylete	232
3.98	mjection Mold for a Mounting Flate (Outset) reclimide (DRA) Migrahaving	230
3.99	I welve-Cavity Hot-Runner Mold for a Polyphinalamide (PPA) introducing	240
3.100	Iwo-Cavity Injection Mold for Handle Covers Made from Glass-riber-Reinforced Polyacetal.	242
3.101	Four-Cavity Injection Mold for Thin-Walled Sleeves Made from Polyester	240
3.102	Injection Mold for a Thermoplastic Microstructure	248
3.103	Injection Mold for Production of Adjustable Climate Control Vents via 3-Shot Molding	250
3.104	Two-Cavity Hot-Runner Injection Mold for an ABS Cover	254
3.105	Six-Cavity Injection Mold for Retaining Nuts with Metal Inserts	256
3.106	Single-Cavity Injection Mold for a Switch Housing Made from Polyacetal	258
3.107	Single-Cavity Injection Mold for a Snap Ring Made from Polyacetal	260
3.108	Injection Mold for High-Density Polyethylene (PE-HD) Trash Can Lids	262
3.109	Single-Cavity Hot-Runner Injection Mold for an Air Vent Housing Made from Acrylonitrile	
	Butadiene Styrene (ABS)	265
3.110	Single-Cavity Hot-Runner Injection Mold for an ABS Housing	268
3.111	Single-Cavity Runnerless Injection Mold for a Polystyrene Junction Box	270

Contents

3.112	Four-Cavity Hot-Runner Injection Mold for a Polyamide 6,6 Joining Plate	272
3.113	2 × 4-Cavity Hot-Runner Stack Mold for Hinged Covers	274
3.114	6-Cavity Mold with Cold-Runner System for Liquid Silicone Rubber (LSR) Caps	276
3.115	Two-Cavity Injection Mold for a Styrene-Acrylonitrile Safety Closure	278
3.116	Four-Cavity Unscrewing Mold for Threaded Polypropylene Closures	280
3.117	Four-Cavity Injection Mold for Polyester Dispenser Heads	282
3.118	Two-Cavity Injection Mold for PMMA Lighting Fixture Cover	284
3.119	Two-Cavity Injection Mold for Polyacetal Hinges	286
3.120	Eight-Cavity Injection Mold for PE-HD Threaded Caps	288
3.121	Two-Cavity Cold-Runner Injection Mold for Thermoset Ashtrays	290
3.122	Single-Cavity Mold for a Polypropylene Cutlery Basket	292
3.123	Two-Cavity Injection Mold for Cover Plates	296
3.124	Single-Cavity Injection Mold for Polystyrene Caps (Mold Frame with Interchangeable	
	Inserts)	298
3.125	Single-Cavity Injection Compression Mold for Thermoset V-Belt Pulley (Injection	
	Transfer Mold)	300
3.126	Eight-Cavity Cold-Runner Injection Mold for Thermoset Elastomer Strain Reliefs	302
3.127	Single-Cavity Injection Mold for a PE-HD Clothes Hanger Produced via Gas-Assisted	
	Injection Molding	304
3.128	Single-Cavity Injection Mold for a Syringe Shield Produced via Metal Injection	
	Molding (MIM)	306
3.129	Three-Station Mold for a Handtool Handle	308
3.130	Four-Cavity Injection Mold for Couplings Produced via Metal Injection Molding (MIM)	312