668.419 TUR 2nd ed.

CONTENTS

1 The mechanical testing of plastics-a preamble	1
1.1 The growth of materials testing	1
1.2 The growth of plastics testing	2
1.3 The rationalization of test methods for plastics	5
2 A generalized approach to mechanical testing	12
2.1 Excitation and response	12
2.2 The mathematical representation of linear systems	14
2.3 Practical limitations on the excitation functions	26
2.4 A rational system of testing	40
3 Deformation experiments-sinusoidal excitation functions	44
3.1 The complex modulus function	44
3.2 Free vibration experiments	45
3.3 Forced vibration experiments	48
3.4 Stress-wave propagation experiments	54
3.5 The practical utility of sinusoidal experiments	58
4 Deformation experiments-step excitation functions	62
4.1 Introduction	62
4.2 Test methods	65
4.3 Special test routines	79
5 Deformation experiments on anisotropic systems	92
5.1 Anisotropy in plastics	92
5.2 Formal representation of anisotropy	94
5.3 Practical testing	97
5.4 Afterthought and prelude	110
6 Strength and toughness testing-the basic concepts	112
6.1 The general situation	112
6.2 Brittle fracture	115
6.3 Ductile failure	123
6.4 Practical implications	126

7 Short-term strength tests-ramp and impulse excitations	129
7.1 Ramps and impulses	129
7.2 Ramp excitation tests	130
7.3 Impulse tests	139
8 Long-term strength test-step and sinusoidal excitations	155
8.1 The system of phenomenological long-term failure tests	155
8.2 Static fatigue	159
8.3 Dynamic fatigue	168
8.4 Economic assessment of long-term durability	172
9 The sample, the specimen and the test	177
9.1 Properties and the sample state	177
9.2 Sample preparation	179
9.3 The sample state as a test variable	181
9.4 Specimen geometry and test configuration	183