668.4236 WYP

CONTENTS

Introduction		
СН	APTER ONE. THE CAUSES OF PVC INSTABILITY	3
1.1	Irregularities in the PVC chain	3
1.2	The catalytic effect of hydrogen chloride on PVC dehydrochlorination	11
1.3	PVC thermal degradation in an inert atmosphere	14
1.4	Thermo-oxidative degradation of PVC	17
1.5	Photolysis and irradiation	18
1.6	The effect of additives on the PVC degradation process	22
СН	APTER TWO. GENERAL CHARACTERISTIC OF STABILIZERS	35
СН	APTER THREE. METAL SOAP STABILIZERS	41
3.1	General characteristics of the group	41
3.2	Basic properties of the main metal carboxylate stabilizers	45
3.3	The mechanism of action of metal soap stabilizers	47
3.4	Basic properties of main metal soap stabilizers	64
CHAPTER FOUR. ORGANOTIN STABILIZERS		75
4.1	General characteristics of the group	75
4.2	Basic properties of some organotin compounds	77
4.3	The mechanism of action of organotin stabilizers	79
4.4	Properties of industrial organotin stabilizers	94
СН	APTER FIVE. ORGANIC STABILIZERS	101
5.1	General characteristics of the group	101
5.2	The mechanism of action of organic stabilizers	104
5.3	Basic properties of the main organic stabilizers	115
СН	APTER SIX. LEAD-CONTAINING STABILIZERS	122
6.1	General characteristics of the group	122
6.2	The mechanism of action of lead stabilizers	123
6.3	The technology of lead stabilizers production	128
6.4	Properties of industrial stabilizers	131

CHA	APTER SEVEN. INHIBITORS OF PHOTOLYTIC PROCESSES	135
7.1	Basic principles of photovhemistry	135
7.2	General characteristics of UV Stabilizers	140
7.3	Basic properties of industrial UV absorbers	142
7.4	The mechanism of UV stabilizers action	144
7.5	The effect of other components	150
7.6	The participation of thermal stabilizers in UV stabilization	154
CH	APTER EIGHT. LUBRICANTS	162
8.1	Basic principles of lubrication	162
8.2	General characteristics of lubricants	170
8.3	The mechanism of lubricant action	173
8.4	Lubrication of PVC compositions for various applications	180
8.5	New lubricants	185
CH	APTER NINE. BIOLOGICAL CORROSION INHIBITORS	192
9.1	Basic consideration on criteria of biological corrosion assessment	193
9.2	Microbiological breakdown of essential components of PVC mixtures	195
9.3	The mechanism of biocide action	203
9.4	Evaluation of biocides	207
СН	APTER TEN. PVC PROCESSING METHODS	220
10.1	Extrusion	224
10.2	2 Blow molding	228
10.3	Injection molding	230
10.4	Calendering	231
10.5	Plastisol coating	232
10.6	Rotational molding	232
10.7	Compounding	233
10.8	Summary	235
CH	APTER ELEVEN. PVC STABILIZATION FOR VARIOUS PROCESSING	
	METHODS	237
11.1	General principles of stabilization formulation	237
11.2	2 Synergism in PVC stabilization	261
11.3	Examples of formulation for various technological processes	278
11.4	Mathematical modeling in PVC stabilization	298

CHAPTER TWELVE. LABORATORY TESTS IN PVC PROCESSING TECHNOLOGY		
12.1 Thermal- and photo-degradation measurements	308	
12.2 Determination of factors related to stabilizer performance	312	
12.3 Quantitative and qualitative determination of stabilizers	315	

CHAPTER THIRTEEN. TOXICITY IN PVC COMPOUNDING DEGRADATION AND STABILIZATION 321

Appendix I.	IR Spectra of Some Metal Soaps	332
Appendix II.	Metal Soap Stabilizers	335
Appendix III.	UV and IR Spectra of Some Organotins	375
Appendix IV.	Industrial Tin Stabilizers	379
Appendix V.	Some Organic Stabilizers	401
Index of Industrial Products		
Index		