Contents

Face to the Second Edition

Preface to the First Edition

Acknowledgements

Chemistry and Basic Intermediates
Introduction
Basic Chemistry
Basic Structure of a Polyurethane Elastomer
Synthesis of Basic Urethane Building Blocks
 Isocyanates
 Storage Life and Reactions of Isocyanates with Themselves—Dimers (Uretidinediones)
Uretidiones
Polyols
Polyesters
Polyethers
Chain Extenders and Crosslinking Agents
Catalysts

2. Polyurethane Elastomer Chemistry
Liquid Processing Routes
Millable Elastomer Synthesis
Thermoplastic Linear Urethane Elastomers
Concept of Equivalent Weights
Concept of the Complete Urethane Chemical System
 Polyol Quantization by Chemical Analysis
 Other Isocyanate Analytical Terms
 Other Useful Terms
 Example Calculation for a Typical Polyurethane Elastomer Synthesis
Blends
Calculation of Isocyanate Proportions for a Water Blow Foam System
Effect of Flexible to Rigid Segment on Urethane Properties
CONTENTS

3. Property–Structure Relationships in Polyurethanes
 Introduction
 Flexible Segments
 Polyethers
 Polycaprolactones
 Rigid Segments
 Aliphatic Versus Aromatic Diisocyanates
 Aliphatic Diisocyanates and Transparency
 Effect of Diisocyanate Structure on the Relative Thermal Stability of Polyurethane Elastomers
 Chain Extension of Unsymmetrical Diisocyanates
 Glycols
 Chain Extension of Symmetrical Diisocyanates with Diols
 Synthesis
 Even Molar Ratio Effects
 Influence of the Diol Structure on Thermal Stability of the PU Elastomer: Molar Ratios 1:2:1
 Loss Tangent Values and Chain Extender Composition
 Uneven Molar Ratio Effects with Respect to the Diisocyanate
 Comparison of the Thermal Stability Effects of a Diamine with Diols (as Chain Extenders) in Polyurethane Elastomers (Molar Ratio 1:3:2)
 Differential Scanning Calorimetry (DSC) as a Means of Predicting Thermal Stability (Molar Ratio 1:2:1)
 DSC Studies and the Molar Ratio 1:2.6:1
 DSC as a Means of Predicting the Relative Thermal Stability of a Diamine (Polacure) with Diol Chain Extenders
 Contribution of Crosslinks to Properties
 Crosslinking and Thermal Stability in Polyurethane Elastomers
 Synthesis Technique
 In-Situ Isocyanate and Isocyanurate Crosslinking
 PU Elastomer Compositions
 Influence of % Free NCO on the Properties of the PU Elastomer at Room Temperature
 Strength Properties at Elevated Temperature
 Dynamic Mechanical Thermal Analysis (DMTA)
 Thermal Equilibrium Properties
 Low Temperature Stiffening and Glass Transition Temperature (T_g)
 Hazards
 Thermal Stability and Crosslink Structure in PUs
 Structure in Polyurethane Elastomers
 Continued Crystal Growth
 Plasticization

4. Reaction Rates, Catalysis and Surfactant
 Reaction Rates
 Diisocyanates
 Polyols
 Temperature
CONTENTS

Catalysis .. 113
Acid Catalysis and Prepolymer Stability (Shelf Life) 113
Shelf Life Stability of Prepolymers 113
Base Catalysis 115
Additional Comments on RIM Catalysis 117
Tertiary Amines 117
Organometallic and Other Metal Compounds 118
Catalyst Combinations 120
Surfactants (Surface Active Agents) 120
 Ionic Surfactants 120
 Non-ionic Surfactants 120

5. Liquid Polyurethane Elastomer Systems 122
Stable Prepolymer Systems .. 124
 Simple Hand Casting Procedure 125
 Chain Extenders 127
 Processing of TDI Prepolymers 129
 Processing Variables 131
 Type of Curative 132
 Reaction Temperature 134
 Other Representative Polymer Systems 135
Unstable Prepolymer System .. 152
Water Crosslinked Millable Vulkollan for Compression Moulding 158
Cellular Polyurethane Elastomers 158
 Vulkollan System 158
 Cellular Urethanes from Stable Prepolymers 159
 Solvents .. 160
Compression Moulding of Cast Elastomers 161
Spray Application of Urethane Elastomers 163
Note on Water Content of Polypols of Urethane Elastomers 164
Alternative Chain Extenders to MOCA 165
 3,3'-Dimethyl-4,4'-diaminodicyclohexylmethane 166
 Diols as Chain Extenders 167
Synthesis and Properties of Polyurethane Elastomers Based on Aromatic
 Versus Aliphatic Diisocyanates 169
CHDI Prepolymer Synthesis and Chain Extension 169
PPDI Prepolymer Synthesis and Chain Extension 171

6. Reaction Injection Moulding (Liquid Injection Moulding) 174
 The Process 178
 RIM Formulation 179
 Water .. 181
Physical Properties of RIM Urethane Systems 182
RIM Machine Design 182
Energy Requirements of RIM 186
Mechanism of Impingement Mixing 187
Mould Design 187
 Transition Zone 189
CONTENTS

Catalysis
 Acid Catalysis and Prepolymer Stability (Shelf Life) 113
 Shelf Life Stability of Prepolymers 113
 Base Catalysis 115
 Additional Comments on RIM Catalysis 117
 Tertiary Amines 117
 Organometallic and Other Metal Compounds 118
 Catalyst Combinations 120
 Surfactants (Surface Active Agents) 120
 Ionic Surfactants 120
 Non-ionic Surfactants 120

Liquid Polyurethane Elastomer Systems 122
 Stable Prepolymer Systems 124
 Simple Hand Casting Procedure 125
 Chain Extenders 127
 Processing of TDI Prepolymers 129
 Processing Variables 131
 Type of Curative 132
 Reaction Temperature 134
 Other Representative Polymer Systems 135
 Unstable Prepolymer System 152
 Water Crosslinked Millable Vulkollan for Compression Moulding 158
 Cellular Polyurethane Elastomers 158
 Vulkollan System 158
 Cellular Urethanes from Stable Prepolymers 159
 Solvents 160
 Compression Moulding of Cast Elastomers 161
 Spray Application of Urethane Elastomers 163
 Note on Water Content of Polyps of Urethane Elastomers 164
 Alternative Chain Extenders to MOCA 165
 3,3'-Dimethyl-4,4'-diaminodicyclohexylmethane 166
 Diols as Chain Extenders 167
 Synthesis and Properties of Polyurethane Elastomers Based on Aromatic
 Versus Aliphatic Diisocyanates 169
 CHDI Prepolymer Synthesis and Chain Extension 169
 PPDI Prepolymer Synthesis and Chain Extension 170

6. Reaction Injection Moulding (Liquid Injection Moulding) 174
 The Process 178
 RIM Formulation 179
 Water 181
 Physical Properties of RIM Urethane Systems 182
 RIM Machine Design 182
 Energy Requirements of RIM 186
 Mechanism of Impingement Mixing 187
 Mould Design 187
 Transition Zone 190
CONTENTS

Moulding
Ribs and Radius
Runners
Mould Sealing
Processing Economics
Reinforced Reaction Injection Moulding Machinery
Dispersion of Fibre Reinforcement

7. Millable Polyurethane Elastomers
Sulphur Vulcanized Grades
Millable Polyether Polyurethane Elastomers
Plasticization
Filler Reinforcement
Isocyanate-Cured Urethane Rubber
Peroxide-Cured Polyurethane Elastomers
 Cure Temperature
 Effect of Fillers
 Combined Peroxide and Diisocyanate Cures

8. Polyurethane Adhesives
Reasons for Adhesive Properties of Polyurethane and Diisocyanate-Based Adhesives
 Isocyanate Reactivity
 Self Polymerization
 Surface Wetting Properties
 Polarity
 Graded Physical Properties
 Reaction with Unreactive Surfaces
Reasons for the Apparent Universal Applications of Polyurethanes as Adhesives
Methods of Using Isocyanates as Adhesives
 As an Isocyanate Primer
 By In-Situ Polyurethane Polymerization
 As Polyurethane Elastomer Without or With Added Polyisocyanates
Thermoplastic Polyurethane Elastomer Types
Elastomer Gum Types
Blocked Di- or Polyisocyanate Adhesives
Aqueous Dispersions of Polyurethanes
Film and Tape Polyurethane Adhesives
Powdered Polyurethane
Stabilization of Adhesives

9. Thermoplastic (Linear Polyurethane Elastomers)
Partially Crosslinked Thermoplastic Polyurethanes
Synthesis of Thermoplastic Polyurethane
 Preparation
 Notes on Large-Scale Production Synthesis Procedures
Processing of Thermoplastic Polyurethanes
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrusion</td>
<td>250</td>
</tr>
<tr>
<td>Injection Moulding</td>
<td>251</td>
</tr>
<tr>
<td>Calendering</td>
<td>253</td>
</tr>
<tr>
<td>Hot-Melt Calendering</td>
<td>254</td>
</tr>
<tr>
<td>Film Lamination</td>
<td>255</td>
</tr>
<tr>
<td>Solution Applications</td>
<td>256</td>
</tr>
<tr>
<td>Reactive Coatings</td>
<td>256</td>
</tr>
<tr>
<td>100%-Solids Reactive Systems</td>
<td>257</td>
</tr>
<tr>
<td>Commercially Available TPUs</td>
<td>257</td>
</tr>
<tr>
<td>Comment About the Set Properties of TPUs</td>
<td>260</td>
</tr>
<tr>
<td>Microporous Thermoplastic Polyurethanes</td>
<td>260</td>
</tr>
<tr>
<td>Blends</td>
<td>263</td>
</tr>
<tr>
<td>Processing of Transparent Thermoplastic Polyurethane Elastomer by Injection Moulding</td>
<td>264</td>
</tr>
<tr>
<td>Thermoplastic Polyurethane Elastomers as Hydraulic Seal Materials</td>
<td>264</td>
</tr>
<tr>
<td>CHDI-Based Polyurethanes</td>
<td>267</td>
</tr>
<tr>
<td>Polyester TPUs</td>
<td>268</td>
</tr>
<tr>
<td>Mixed Aliphatic Diols as Chain Extenders (CHDM and BDO)</td>
<td>277</td>
</tr>
<tr>
<td>Polyether TPUs</td>
<td>277</td>
</tr>
<tr>
<td>Thermal Stability</td>
<td>278</td>
</tr>
<tr>
<td>Polycaprolactone/CHDI Polyurethanes</td>
<td>278</td>
</tr>
<tr>
<td>Polycaprolactone/PPDI Polyurethanes</td>
<td>278</td>
</tr>
<tr>
<td>Polyether/PPDI Polyurethanes</td>
<td>278</td>
</tr>
<tr>
<td>Polyether/CHDI Polyurethanes</td>
<td>279</td>
</tr>
<tr>
<td>Energy Absorption (tan δ)</td>
<td>279</td>
</tr>
<tr>
<td>Post-Cure Prediction Responses</td>
<td>279</td>
</tr>
<tr>
<td>Conclusions</td>
<td>279</td>
</tr>
<tr>
<td>10. Water Dispersions of Polyurethane Elastomers</td>
<td>281</td>
</tr>
<tr>
<td>Self-Emulsifying Latex</td>
<td>281</td>
</tr>
<tr>
<td>Emulsified Latex</td>
<td>282</td>
</tr>
<tr>
<td>Polyurethane Ionomers</td>
<td>284</td>
</tr>
<tr>
<td>Special Features of Water-Dispersed Polyurethane Elastomers</td>
<td>286</td>
</tr>
<tr>
<td>Anionic Dispersions</td>
<td>287</td>
</tr>
<tr>
<td>Cationic Dispersions</td>
<td>288</td>
</tr>
<tr>
<td>Practical Example for the Preparation of a Polyurethane Dispersion (Melt-Dispersion Technique)</td>
<td>290</td>
</tr>
<tr>
<td>1. Analysis and Characterization of Polyurethane Elastomers</td>
<td>292</td>
</tr>
<tr>
<td>Diisocyanates</td>
<td>292</td>
</tr>
<tr>
<td>Measurement of NCO Content</td>
<td>293</td>
</tr>
<tr>
<td>Total Chlorine: Principle of the ASTM Method D1638</td>
<td>295</td>
</tr>
<tr>
<td>Acidity</td>
<td>295</td>
</tr>
<tr>
<td>Hydrolyzable Chlorine</td>
<td>296</td>
</tr>
<tr>
<td>Isomer Ratio</td>
<td>297</td>
</tr>
<tr>
<td>Activity of Diisocyanate</td>
<td>297</td>
</tr>
<tr>
<td>Diisocyanates in the Atmosphere</td>
<td>298</td>
</tr>
<tr>
<td>Polyol Analysis</td>
<td>303</td>
</tr>
</tbody>
</table>
Hydroxyl Number
Primary and Secondary Hydroxyl Groups
Water Content
Acid Number
Measurement of pH (Apparent)
Hydrolytic Stability
Unsaturation
Peroxide Content
General Analytical Parameters for Polyols
Infrared Spectroscopy Techniques
Determination of Isomer Ratio of TDI by Infrared Spectroscopy
Determination of Unreacted NCO Groups in a Polyurethane Elastomer
An Additional Rapid Infrared Method for the Quantitative Analysis of NCO Present in a Polyurethane Elastomer
Chromatography Techniques
Gas–Liquid Chromatography
Thin Layer Liquid Chromatography
Thermal Analysis
Identification of the Components in a Polyurethane
Polyesters
Polyethers
Differentiation of Polymers Present in a Polyurethane
General Analysis of Miscellaneous Elements in a Polyurethane Elastomer
Colour Reactions for Polyurethane Identification
References

12. Special Types of Polyurethane Elastomers
Hydroxy-Terminated Polybutadienes
Process Oils and Plasticizers
Low-Temperature Resistance
Transparent Polyurethane Elastomers
Amine-Terminated Polyols
Fluorinated Polyols
UV Light Curable PU Systems

13. Properties and Applications
Tensile Properties
In Tension
In Compression
Load Deflection Properties
Comparison of Physical Properties of Polyurethane Elastomers with Common Rubbers and Plastics
Energy Absorption Properties
Wear Resistance
Friction Properties
Environmental and Ageing Properties
Light Resistance
High Energy Radiation Effects
Electrical Properties
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>xix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>390</td>
</tr>
<tr>
<td>Current Types of PU Elastomer</td>
<td>391</td>
</tr>
<tr>
<td>Solid Tyres</td>
<td>392</td>
</tr>
<tr>
<td>Pneumatic Polyurethane Tyres</td>
<td>392</td>
</tr>
<tr>
<td>Microcellular Shoe Solings</td>
<td>395</td>
</tr>
<tr>
<td>Blends of TPU with other Thermoplastics</td>
<td>397</td>
</tr>
<tr>
<td>Rollers</td>
<td>397</td>
</tr>
<tr>
<td>Automotive Body Panels and Bumpers</td>
<td>398</td>
</tr>
<tr>
<td>Rain-Erosion Protection of Surfaces</td>
<td>398</td>
</tr>
<tr>
<td>Cold-Curing Elastomers</td>
<td>398</td>
</tr>
<tr>
<td>Low-Speed Tyre-Filling Compositions</td>
<td>398</td>
</tr>
<tr>
<td>Water Vapour Permeable PU Elastomers</td>
<td>399</td>
</tr>
<tr>
<td>Polyurethane Elastomers in Medicine</td>
<td>400</td>
</tr>
<tr>
<td>Millable Polyurethane Elastomers</td>
<td>403</td>
</tr>
<tr>
<td>Fillers for Cold-Cast Polyurethane</td>
<td>404</td>
</tr>
<tr>
<td>Plasticizers for Polyurethane Elastomers</td>
<td>405</td>
</tr>
<tr>
<td>Manufacturing Factors</td>
<td>405</td>
</tr>
<tr>
<td>Moulding</td>
<td>405</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>405</td>
</tr>
<tr>
<td>Mould Lubricant</td>
<td>405</td>
</tr>
<tr>
<td>Mould Cleaning</td>
<td>406</td>
</tr>
<tr>
<td>Machining</td>
<td>406</td>
</tr>
</tbody>
</table>

14. Health Hazards and Precautions | 407 |
| Toluene Diisocyanate (TDI) | 409 |
| Diphenylmethane Diisocyanate (MDI) | 409 |
| 1,5-Naphthalene Diisocyanate (NDI) | 411 |
| Toxicity Data for the Analogues Aromatic and Aliphatic Diisocyanates | 411 |
| General Toxicity Problems | 413 |
| Handling Isocyanates and Manufacture of Polyurethane Products | 413 |
| Skin Irritation | 414 |
| Protective Clothing | 416 |
| First Aid | 416 |
| Specific Hazards Associated with the Manufacturing Processes | 417 |
| Urethane Rubbers | 417 |
| Manufacture of Moulded Articles | 417 |
| Surface Coatings | 418 |
| Printing Inks | 419 |
| Adhesives | 420 |
| Isocyanate Monitoring and Detection | 420 |
| Analytical Monitoring Techniques | 421 |
| Alternative Method | 423 |
| Determination of TDI in Solvent Atmosphere | 424 |
| Diamines | 425 |
| Polyols and Glycols | 425 |
| Waste Disposal | 426 |

References and Bibliography | 427 |

Index | 429 |