Contents

	eface				
	oout the Editors				
	st of Contributors				
Co	ontents of Volumes in This Set	хi			
Ci	HAPTER 1. Nano Reinforcements of Renewable Plastics: To Create the Next Generation of Value-Added Novel Eco-Friendly Nanocomposites Suprakas Sinha Ray, Mosto Bousmina				
1.	Introduction				
2.	Synthesis, Structure and Properties of Renewable Plastics				
	Synthesis, Structure and Properties of Renewable Plastics	3			
	2.2. Poly(3-hydroxybutyrate)	3			
	2.3. Thermoplastic Starch2.4. Plant Oils-Based Polymers	. :			
	2.5. Cellulose				
	2.6. Gelatin	. 6			
	2.7. Chitosan	6			
3.	Polymer/Layered Silicate (PLS) Nanocomposite Technology				
4.	- \ 777 /				
5. Techniques Used for Nanocomposite Characterizations					
6.	Preparative Techniques	10			
	6.1. Solution Intercalation	10			
	6.2. In Situ Intercalative Polymerization				
	6.3. Melt Intercalation	17			
7.	Properties,,	26			
	7.1. Mechanical Properties				
	7.2. Heat Distortion Temperature				
	7.3. Thermal Stability				
	7.4. Gas Barrier Properties				
8.	Biodegradability	37			
	8.1. PLA and its Nanocomposites				
	8.2. PHB and its Nanocomposites	39			
9.	Crystallization Behavior and Morphology	40			
0.	E				
	10.1. Dynamic Oscillatory Shear Measurements				
	10.2. Steady Shear Measurements				
	10.3. Elongation Viscosity				
	Foam Processing				
2.					
	References	50			

CHAPTER 2. Biodegradable Foams		
	Salvatore Cotugno, Ernesto Di Maio, Giuseppe Mensitieri,	
	Luigi Nicolais, Salvatore Iannace	
1.	Introduction	6
1.	1.1. Biodegradable Foams: Applications, Primary Required Features,	U
	and Examples in Nature	4
	1.2. Basic Aspects of the Foaming Process	
	1.3. Relevant Material Properties and Processability	
	1.4. Issues Related to Biodegradable Polymers	
2.	Basic Aspects and Properties 64	
٠.	2.1. Properties of Polymer-Gas Mixtures 64	
	2.2. Properties of Foams	
	2.3. Foaming Agents	
3.	Foaming Processes	
	3.1. Batch Foaming	
	3.2. Extrusion Foaming	
	3.3. Other Foaming Techniques	
4.	Foams from Biodegradable Polymers	1
	4.1. Natural Polymers	1
	4.2. Synthetic Polymers 97	7
	References	3
_	ARTER 2 Riedowedstiens and Dhysical Drawation of	
	APTER 3. Biodegradations and Physical Properties of	
	arepsilon-Caprolactone and Lactide Copolymers	
	Hajime Yasuda, Hiroyuki Shirahama, Yuushou Nakayama	
1.	Introduction	8
2.	Introduction	9
	2.1. Synthesis of Copolymers of (R)-MOHEL with Lactones	
	2.2. Biodegradation by Activated Sludge	
	2.3. Biodegradation with Sea Water	
	2.4. Biodegradation with Enzymes	4
	2.5. Analysis of Degraded Products	5
3.	Copolymerizations of CL with Depsipeptides	
	3.1. Synthesis of Depsipeptides and their Copolymerization	
	3.2. Enzymatic Degradation of DMO/CL Copolymers	
4.	Random Copolymerizations of CL with Cyclic Carbonates	3
	1.1. Synthesis of poly[(R) -1-methyltrimethylene carbonate-ran-CL] or	
	poly[(S)-1-methyltrimethylene carbonate-ran-CL]	
	1.2. Preparation of poly[(R,R)-1,3-DTC-ran-CL	
	3.3. Biodegradation of poly[(R)-1-MTC-ran-CL] or poly[(S)-1-MTC-ran-CL]	
	4.4. Biodegradation of poly[(R,R) -1,3-DTC-ran-CL] or poly[(S,S) -1,3-DTC-ran-CL] 123	
	k.5. Biodegradability of Blended Polymers	
	1.6. Change in Properties of Copolymers Before and after Enzymatic Degradation	
	7. Analysis of Degraded Products	
5.	Copolymerizations and Degradations of Block Copolymers Composed of CL or VL and DXO 127	
6.	Copolymerizations of LA with CL	3
	5.1. Preparation of Random and Block Copolymers between L-LA or D-LA and CL,	
	and Stereocomplexes between Them	
	5.2. Biodegradability of Random and Block Copolymers of L-LA and CL	
	5.3. Biodegradation of Stereocomplexes with Proteinase K	
	5.4. Mechanical Properties of Stereocomplexes	i

7.	Copolymerizations of LA with MOHEL	131
	7.1. Syntheses of Random Copolymers of L-LA or D,L-LA with MOHEL	131
	7.2. Biodegradation of Random Copolymers of LA with MOHEL	132
	7.3. Changes in Polymer Properties after Enzymatic Degradation	
8.	Copolymerizations of LA with Depsipeptides	
	8.1. Synthesis of Random Copolymers between L-LA with Depsipeptides	134
	8.2. Degradation of Copolymers with Compost	135
	8.3. Decomposition of Copolymers with Proteinase K	
	8.4. Analysis of Degraded Products from poly(L,L-DMO-ran-L-LA) (16/84)	
9.	Copolymerizations of LA with Cyclic Carbonates	
	9.1. Random Copolymerization of L-LA with Six-Membered Cyclic Carbonates	
	9.2. Degradation of poly(L-LA-ran-Cyclic Carbonate)s	
	9.3. Mechanical Properties of poly(L-LA-ran-Cyclic Carbonate)s	
	9.4. Changes in Copolymer Properties after Enzymatic Degradation	
	9.5. Random Copolymerization of D,L-LA with Six-Membered Cyclic Carbonates	
	9.6. Degradation of poly(D,L-LA-ran-Cyclic Carbonate)s	
	9.7. Mechanical Properties of poly(D,L-LA-ran-Cyclic Carbonate)s	
	9.8. Block Copolymerization of L- and D,L-LA with Six-Membered Cyclic Carbonates	
10.	Conclusion	150
_ ~ .	Conclusion	150
CI	HAPTER 4. Biodegradable Polymer/Layered Silicate	
	Nanocomposites	
	M = 101 = 11	
1.	Introduction	154
2.	History of PLS Nanocomposites	155
3.	Structure of LS and its Modification with Surfactants	156
	Preparation Methods and Structure of PLS Nanocomposites	
т.	4.1. Intercalation of Polymers or Prepolymers from Solution	
	4.2. The In Situ Intercalative Polymerization Method	
	4.3. The Melt Intercalative Totylinerization Method.	
	4.4. Structure of PLS Nanocomposites	
5.	Characterization of PLS Nanocomposites	
	Biodegradable Polymer/LS Nanocomposites	
٥./	6.1. PCL/LS Nanocomposites	
	6.2. PVA/LS Nanocomposites	
	6.3. PLA/LS Nanocomposites	
	6.4. PBS/LS Nanocomposites	
	6.5. PHB/LS Nanocomposites.	
		167
7		
7.	Materials Properties of Biodegradable Polymer/LS Nanocomposites	
0	7.1. Mechanical Properties	
8.	Crystallization of Biodegradable Polymer/LS Nanocomposites	
9.	Melt Rheology of Biodegradable Polymer/LS Nanocomposites	
	9.1. Dynamic Oscillatory Shear Measurement	
	9.2. Steady Shear Flow.	
4.0	9.3. Elongational Flow and Strain-Induced Hardening	
10.	Processing Operations	177
11.	Creating Porous Ceramic Materials Via PLA/LS Nanocomposites	
12.	Current Status and Future Prospects of Biodegradable Nanocomposites	
	References	777

CHAPTER 5. Biodegradable Edible Films and Coatings Based on Protein Resources: Physical Properties and Applications in Food Quality Management

Ioannis S. Arvanitoyannis

		000
1.	Introduction	
2.	Wheat Gluten Films	201
	2.1. Thermal Properties	201
	2.2. Mechanical Properties	
_	2.3. Gas Permeability (GP) and Water Vapor Permeability (WVP)	200
3.	Corn Zein Films	
	3.1. Thermal Properties	
	3.2. Mechanical Properties	209
	3.3. Gas Permeability (GP) and Water Vapor Permeability (WVP)	211
4	Casein/Caseinate Films.	
	4.1. Thermal Properties	212
	4.2. Mechanical Properties	212
		214
	4.3. Gas Permeability (GP) and Water Vapor Permeability (WVP)	214
5.	Whey Protein Isolate (WPI) Films	217
	5.1. Thermal Properties	217
	5.2. Mechanical Properties	220
	5.3. Gas Permeability (GP) and Water Vapor Permeability (WVP)	
6.	Soy Protein Isolate (SPI) Films	221
٠.	Soy Protein Isolate (SPI) Films	224
	6.2. Mechanical Properties	224
	6.3. Gas Permeability (GP) and Water Vapor Permeability (WVP)	
7.	Gelatin Films	227
	7.1. Thermal Properties	228
	7.2. Mechanical Properties	228
	7.3. Gas Permeability (GP) and Water Vapor Permeability (WVP)	230
8.	Additional Research	231
	8.1. Fish-Based Films	231
	8.2. Pea Protein Films	231
	8.3. Rapeseed Protein Films	
	8.4. Egg Albumin, White/Starch Films	
	8.5. Peanut Protein Film	
	8.6. Pickle Fermentation Brine Protein Films	
^	8.7. Fruit Puree Edible Films	
9.	Conclusions	
	References	235
C L	JADTED 6 Engymetic Synthesis and Chemical Decycling of	
G.	HAPTER 6. Enzymatic Synthesis and Chemical Recycling of	
	Green Polymers	
	Shuichi Matsumura, Yasushi Osanai, Yasuyuki Soeda, Yoichi Suzuki,	
	Kazunobu Toshima	
	IMLUNOOU IOSIWIU	
1.	Introduction	240
2.	Polyester Synthesis Using PHB Synthase and Depolymerase	242
	2.1. In Vitro Polyester Synthesis with PHB Synthase	
	2.2. In Vitro Polyester Synthesis with PHB-Depolymerases	
2	Polyesters by Condensation Polymerization	
3.		
	3.1. Polycondensation of Hydroxy Acids	245

3.2.	Polycondensation of Dicarboxylic Acids and Diols	2
3.3.	Lactonization and Macrocyclization	2
3.4.	Regioselective Polycondensation	
3.5.	Stereoselective Oligomerization	2
3.6.	Functional Polyesters	
3.7.	Polymerization of Cyclic Diacids Anhydride with Diols or Oxiranes	2
3.8.		
4.1.		
4.2.		
4.3.		
4.4.	·	
4.5.		
4.6.		
4.7.	- · · · · · · · · · · · · · · · · · · ·	
	• • • • • • • • • • • • • • • • • • • •	
		~`
0111		21
6.2		
0.5.		26
64		
7.1.	Polymboshbatas	26
/1.4. 72 /	Polyviloveno	26
1.5.	Toryshovano	20
	\ 7-	
	, , , , , , , , , , , , , , , , , , ,	
10.4.	Toward Establishment of a Sustainable Biochemical Complex	
Refer	rences	27
	3.5. 3.6. 3.7. 3.8. 3.9. 3.10. Polye 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. A Ne 5.1. 5.2. Enzy 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Enzy 7.1. 7.2. 7.3. Enzy 8.1. 8.2. 8.3. Gree Trend 10.1. 10.2. 10.3.	3.5. Stereoselective Oligomerization 3.6. Functional Polyesters 3.7. Polymerization of Cyclic Diacids Anhydride with Diols or Oxiranes. 3.8. Polymerization of Polycaprolactone and Poly(alkylene dicarboxylate)s 3.9. Transesterification of Polycaprolactone and Poly(alkylene dicarboxylate)s 3.10. Polycondensation Mechanism of Dicarboxylic Acid with Diols. Polyesters by Ring-Opening Polymerization of Lactones. 4.1. Ring-Opening Polymerization of Lactones. 4.2. Polylactide and its Copolymer 4.3. Macrocyclization 4.4. Stereoselective Ring-Opening Polymerization of Lactones. 4.5. Regioselective Lactone Ring-Opening Reaction with Nucleophiles. 4.6. Branched Polymers and Block Copolymer 4.7. Preparation of Polymalate by the Ring-Opening Polymerization of Maiolactonate. 4.8. Polymerization Mechanism of Lactones. 4.8. New Route to Sustainable Chemical Recycling of Polyesters Using an Enzyme 4.9. Labach Procedure for the Degradation of Polyesters into Repolymerizable Oligomers. 5.1. Batch Procedure for the Degradation of Polyesters. 5.2. Continuous Flow System for the Degradation of Polyesters. 5.3. Enzymatic Synthesis of Polycarbonate 6.4. Enzymatic Synthesis of Polycarbonate 6.5. Lipase-Catalyzed Ring-Opening Polymerization of Cyclic Carbonates 6.6. Lipase-Catalyzed Ring-Opening Polymerization of Cyclic Carbonates 6.7. Polycondensation of Carbonate Diesters and Diols 6.6. Chemical Recycling of Polycarbonates using an Enzyme 6.6. Poly(carbonate-urethane) 6.7. Polythioesters 7. Polythioesters 7. Polythioesters 7. Polythioesters 7. Polythosphates 7. Polythioesters 7. Polythosphates

	3.2. Glass Transition Temperature
	3.3. Solubility
	3.4. Hydrophobicity/Hydrophilicity
	3.5. Hydrolytic Stability/Instability
4.	Biomedical Applications of Polyphosphazenes
	4.1. Biostable and Bioactive Polyphosphazenes
	4.2. Biodegradable Polyphosphazenes
5.	Conclusions
	References
Cł	HAPTER 8. Chemical Modification of Chitin and Chitosan and
	Their Biodegradation
	Hitoshi Sashiwa, Sei-ichi Aiba
	Thoshi Sushiwa, Sel-teta Atba
1.	Introduction
2.	Dissolution of Chitosan in Organic Solvents
3.	Sugar-Modified Chitosan
4.	Chitosan-Dendrimer Hybrids
5.	Biodegradation of Modified Chitosans
6.	Enzymatic Production of N-Acetyl-D-Glucosamine from Chitin
7.	Cyclodextrin-Linked Chitosan
8.	Crown Ether-Bound Chitosan
9.	Chemical Grafting of Chitosan
10.	Enzymatic Modification of Chitosan
l1.	Other Modifications
12.	Conclusions
	References 326
<u> </u>	IABTED O The Coutherin of Delvenhadrides
C	HAPTER 9. The Synthesis of Polyanhydrides
	Brandon M. Vogel, Surya K. Mallapragada
1.	/Introduction ./
2,/	Early Polyaphydrides
3.	Erosion and Degradation
	High-Molecular-Weight Polyanhydrides: Melt Condensation
5.	Coordination Catalysts
6.	Solution Polymerization
7.	Poly(ethylene glycol) Containing Polyanhydrides
8.	Polyanhydride Networks
9.	Block Copolymer Synthesis
	9.1. Tin(II) Octoate
	9.2. Living Polymerization
	9.3. Synthesis of Anhydride Rings
	9.4. Covalent Coupling of Blocks 343
10.	Microwave Polymerization
11.	Conclusions and Future Directions

CHAPTER 10. Micro- and Nano-Fabrication of Biodegradable Polymers

S. C. Chen, Y. Lu

1.	Intro	duction	349	
2.	Laser Micromachining			
	2.1.	Lasers for Micropatterning	351	
	2.2.	Laser Micropatterning of Polymers	353	
3.	Nano	osphere Lithography	353	
	3.1.	Sample Preparation and Processing	354	
	3.2.	Nanostructure Formation	355	
4.	Repl	ication Techniques	356	
	4.1.	Microimprinting Lithography	357	
	4.2.	Soft Lithography	357	
5.	Rapi	d Prototyping Techniques	359	
	5.1.	Direct Deposition Methods	359	
	5.2.	Three-Dimensional Printing	360	
	5.3.	Laser Stereolithography	361	
6.	Sum	mary and Future Prospects	363	
	Refe	rences	364	
_				
Inc	iex		367	