CONTENTS

POLYPROPYLENE

PHYSICAL AND MECHANICAL PROPERTIES OF POLYPROPYLENE	1
Classification of polypropylene	1
Crystallinity of polypropylene	3
Molecular weight and impact resistance	5
Processability	7
Injection moulding of polypropylene	10
Mechanical properties of injection moulding grade polypropylene	12
Low temperature brittleness	12
Oxidation and ageing resistance	15
Miscellaneous properties	15
Abrasion resistance	15
Resistance to solvents	16
Electrical properties	17
Conclusion	17
THE MOULDING CHARATERISTICS OF POLYPROPYLENE	19
General considerations	19
Flow behaviour	20
Melt flow index	20
Spiral flow	23
High shear viscometry	24
Specific volume and heat content	25
Mould shrinkage	27
Crystalline structure	28
Moulding procedures	28
Injection unit	28
Moulds	29
Machine settings	29
Conclusions	30
DISCUSSION ON POLYPROPYLENE	31

MATERIAL DEVELOPMENTS

SOME NEW EPOXIED RESIN SYSTEMS AND THEIR PROPERTIES	
Epoxide resins	37
Physical properties of EP.201	38
Methods of hardening EP.201	39
Properties obtained with EP.201	39
Amine hardeners	40
Flexibilizers for epoxide resins	43
Methods of using modified amines as flexibilizers for epoxide resins systems	44
Applications of modified amine flexibilizers	47
CROSSLINKING OF THERMOPLASTICS AFTER FABRICATION	49
Scope of present work	50
Comparative features of processing in irradiation and chemical cures	52
Summary of observations	55
Polythene	55
Secondary cellulose acetate	56
Polyvinyl chloride (p.v.c.)	59
SOME THERORETICAL AND EXPERIMENTAL ASPECTS OF BLOCK AND GRAFT	
COPOLYMERS	63
Part I	
Methods of preparation	68
Block copolymers	68
Initiation by primary macroradicals	68
Ionic initiation	69
Initiation by primary macromolecules containing labile end groups	69
Transfer method	71
Free radicals produced by chain scission	71
Coupling of preformed polymers	72
Graft copolymers	72
Transfer process	72
Reactive side groups	73
Copolymerization with unsaturated polymer	74
	<i>,</i> .
Photochemical methods	74

Theoretical considerations	77
Fundamental equations	77
The duofunctional initiator	78
Other application of Equation 2	80
Comparison of block yields using various monomers	80
Discussion of Y'd values	84
Synthesis of initiators of type I ₁ RI ₂	84
Calculated block yields using "Bismac"	86
Thermal initiation	88
Transfer to initiation	88
Transfer to dear polymer	88
Experimental data	89

RECENT DEVELOPMENTS IN GLASS REINFORCED PLASTICS

95

DISCUSSION ON MATERIAL DEVELOPMENTS

THE PROGRESS OF GLASS REINFORCED PLASTIC IN THE BENELUX

COUNTRIES	97
Basic materials and resins	97
Reinforcing materials	98
Manufacturing methods	98
Hand lay-up	98
Vacuum bag technique	101
Preforming	102
Continuous moulding	102
Dough moulding	102
PROGRESS IN GERMANY	103
PROGRESS IN THE UNTED KINGDOM	111
Development in materials	111
Resins	111
Catalyst systems	113
Glass fibre	115
Moulding techniques	115
Contact moulding	115
Roof sheeting	116
Dough moulding and pre-impregnation	117

Performance of final moulding	118
The use of mineral fillers	118
Degree of cure	119
Conclusion	120
PROGRESS IN THE	123
New resin technology	124
Reinforcements	126
Finishes	127
Dough moulding	128
Spray moulding	128
Technical organization for reinforced plastics	129

DISCUSSION ON RECENT DEVELOPMENTS IN GLASS REINFORCED PLASTICS 131

EXPANDED PLASTICS

U.S. DEVELOPMENTS IN FOAMED PLASTICS AND IN PARTICULAR FOAMED

SMOKES	139
Explanation of foamed plastics	139
Commercial developments	140
Development of foamed plastics smokes	144
Applications of foamed plastics smoke	146
Seeding of rain clouds	146
Crop-warming clouds	146
Prevention of evaporation	146
Artificial snow, fog and smoke	147
Carrier for insecticides	147
Reflection of communication radio waves	147
Outer space tracers for rockets and satellites	147
Decontamination of the atmosphere	147
Other uses	147
BULK DENSITY AND PHYSICAL PROPERTIES OF EXPANDED POLYSTYRENE	149

Preparation of the foamed polystyrene	149
Preparation of specimens	150
General physical properties	150
Thermal conductivity	153
Deformation of foamed polystyrene	155
Deformation under impact loading	155
Deformations under static load	161
Tensile and impact strengths of foamed polystyrene	165
Summary	166

DISCUSSION ON EXPANDED PLASTICS

EXTRUSION

EXTRUSION STUDIES ON THERMOPLASTICS	173
Description of the extruder	174
Experimental procedures	176
Assessment of results	179
Effect of temperature	179
Power considerations	180
Flow through the die	183
Mechanical properties	186
Screw temperature measurements	186
General conclusions	186
Polymer temperature	186
Effect of liner temperature	186
Energy balances	188
Viscosity studies	188
Appendix	189
THE EXTRUSION OF ACRYLICS	191
Polymethyl methacrylate for extrusion	191
Extrusion behaviour of polymethyl methacrylate	192
Extrusion equipment for acrylics	194
Barrel	194
Screw	203
Vented extruders	204
Dies and finishing gear	205
Extrusion and rods	205
Tubes and rods	205
Profiles	207
Sections post-formed from tube dies	208
Trough sections light fittings	208
Rain water gutter section	209
Extruded acrylic sheet	210
DISCUSSION ON EXTRUSION	214