671.53 POS

CONTENTS

1.	Some Theoretical Concepts on the Role of Electrical Phenomena in Contact and	
	Friction of Solids	1
1.1	Electrostatic Component of adhesion	1
1.2	Electromagnetic Component of Adhesion	5
1.3	Role of Electroadhesion Forces in Rolling Friction	8
1.4	Electrostatic and Electromagnetic Components in Sliding Friction	9
1.5	Resonance Electromagnetic Mechanism of Energy Dissipation in External Friction	15
1.6	Elementary Theory of Friction	17
1.7	Dependence of Frictional Force on sliding Speed	21
1.8	Relationship Between Friction Force and Energy Absorption	22
1.9	Electronic Mechanism for the Plasticization of Solids in Contact Interaction	24
2. 1	Experimental studies of Electrical Phenomena in the Friction of metals	29
2.1	The Work Function as a criterion of the Physicochemical Activity of Sliding surfaces	29
2.2	Electron Emission	43
2.3	Principal Seats of EMF and Equivalent Circuits for	56
2.4	Contact Conductance	66
2.5	Features of Thermoelectric Phenomena in Friction	82
2.6	Role of Electrochemical Processes	91
2.7	Electrical Phenomena in Friction with Selective Transfer	99
3.]	Electrical Properties and Load-Carrying Capacity of boundary Lubricant Layers	113
3.1	Introduction	113
3.2	Electrical Properties of boundary Layers Formed by chain Molecules	119
3.3	Effect of Size of Chain molecules on the Lubricant Properties of Liquids	124
4.]	Experimental Investigation of Electrical Phenomena in the Cutting of metals	135
4.1	Parameters of the tool-Workpiece-Machine Thermoelectric Circuit	135
4.2	Effect of the State of the Thermoelectric Circuit on cutting Tool Life and the	
	Roughness of the machined Surface	145
4.3	The AC Component of Thermal EMF and Its Role in the Study of the Dynamics of	
	Contact Processes	153
4.4	Information Content of Potentialograms for Cutting in Electrolytic Media	163
5.	Theoretical and Experimental Substantiation of the Destructive Function of Thermoelectr	ic
	Current in the Cutting of Titanium Alloys	173
5.1	Critical Review of Ideas on the Mechanism by which Thermoelectric Current Affects the	
	Wear of Rubbing Couples and Metal-cutting Tools	173
5.2	Thermoelectric Current as a Stimulator of Sizing and Diffusional sintering of Materials	186
5.3	Some Factors Predetermining the Effect of Electrical Insulation of the tool	194
5.4	Role of Thermoelectric Phenomena in the Formation of a cohesion Joint and	

Machining of Titanium alloy	204
6. Triboelectric Phenomena in Metal-Polymer Systems	213
6.1 Introduction	213
6.2 Current Ideas on the Mechanism of Frictional Charging	215
6.3 Effect of Electric Charging on Transfer Phenomena in Metal-Polymer Frictional couples	219
6.4 Effect of Electrical Insulation of the Tool in the Machining of a Dielectric	222
7. Aspects of Magnetism in Cutting and Friction	226
7.1 Magnetic Treatment of the Tool	226
7.2 Cutting with a magnetized Tool	228
7.3 Extension of Drill Life Through Pulsed Magnetic Treatment	223
7.4 Magnetostructive Strengthening of High-speed Steels in Pulsed magnetic Fields	236
7.5 Elastomagnetic Interaction of solids Under Severe Conditions of Sliding	239
Conclusion	
Appendices	
References	
Author Index	
Subject Index	