¥,

TABLE OF CONTENTS

Preface		v
Introduction		vii
Chapter 1	The Nebulous Concept of Lignin	1
	1-1. DEFINITION OF LIGNIN	2
	1-2. DISTRIBUTION OF LIGNIN	4
	1-3. ADDITIONAL READING	5
	REFERENCES	6
Chapter 2	The Isolation of Lignin	¢ 7
	2-1. ISOLATION METHODS OF FIRST CLASS DEPEND-	
	ING UPON REMOVAL OF CELLULOSE	8
	A. Sulfuric Acid Lignin	9
	B. Hydrochloric Acid Lignin	10
	C. Other Acid Lignins	11
	D. Cuprarnmonium Hydroxide Lignin	11
	E. Periodate Lignin	13

•

2-2.	ISOLATION METHODS OF SECOND CLASS WHICH		
	REMOVE LIGNIN AND LEAVE CELLULOSE	13	
	A. Organosolv Lignins	14	
	B. Lignins Isolated with Inorganic Reagents	18	
2-3.	ATTEMPTS TO ISOLATE LIGNIN IN THE UN-		
	CHANGED FORM	32	
	A. Brauns' Isolated Native Lignin	32	
	B. Enzymatically Liberated Lignins	34	
	C. Milled-Wood Lignins	35	
▶ 2-4.	DETERMINATION OF LIGNIN	37	
	A. Direct Methods	38	
	B. Indirect Methods	47	
	C. Lignin in Solution	52	
2-5.	QUALITATIVE ANALYSIS AND COLOR REAC-		
	TIONS OF LIGNIN	58	
	REFERENCES	58	

Chapter 3 The Chemical Structure of Lignin

65

3-1.	EVOLUTION OF THE PRESENT-DAY STATUS OF	
	KNOWLEDGE OF THE MONOMERIC UNIT AND	
	SIDE-CHAIN CONFIGURATION OF LIGNIN	65
3-2.	LINKAGES BETWEEN MONOMERIC UNITS	68
	A. Degradation Studies	68
5	B. Model-Compound Studies	72
	C. Synthetic Studies	91
	D. New Physical Approaches	102
3-3.	FORMULATION FOR LIGNIN	106
	A. First Formulation of Brauns	· 106
	B. Erdtman's Formulation	106
	C. First Formulation of Adler	107
	D. Brauns' Formulation of 1960	. 109
	E. Adler's Formulation of 1961	111
	F. Freudenberg's Formulation of 1961	113
	G. Freudenberg's Formulation of 1962	114
	H. Freudenberg's Formulation of 1964	117
	I. Freudenberg's Formulation of 1965	120

-

TABLE OF CONTENTS

14

		J. Ludwig, Nist, and McCarthy's Formulation of	10
		1964	123
		K. Forss and Fremer's Formulation of 1965	124
		L. General Considerations	127
	3-4.	HARDWOOD LIGNINS	129
		REFERENCES	131
Chapter 4	The	Biosynthesis and Formation of Lignin	136
	4-1.	THE BIOSYNTHESIS OF LIGNIN MONOMERS	136
		9	
	4-2.	THE CONVERSION OF LIGNIN MONOMERS INTO	
	4-2.	THE CONVERSION OF LIGNIN MONOMERS INTO LIGNIN	146
	4-2. 4-3.	THE CONVERSION OF LIGNIN MONOMERS INTO LIGNIN CONCLUSIONS	146 147

Chapter 5	The Reactions of Lignin in Major Pulping	g and
a. E	Bleaching Processes	149
	5-1. THE SULFITE PROCESS	150
	A. Inhibitors of Sulfite Pulping	152
	B. Mechanism of the Sulfonation Reaction	155
	C. Recent Studies of Forss and Fremer	158
	D. Continuing Studies	169
	5-2. THE SULFATE PROCESS	169
	5-3. BLEACHING PROCESSES	175
	A. Chlorination	176
	B. Oxidative Bleaching	178
	C. Reductive Bleaching	181
	REFERENCES	182
/		
Chapter 6	The Chemical Reactions of Lignin	
`~	6-1. SULFONATION	185
	6-2. HYDROLYSIS	186
	A. In Acid or Neutral Solution	186
25	B. In Alkaline Solution	193
	6-3. ALCOHOLYSIS	196

xi

6-4.	OXIDATION	198
	A. Alkaline Permanganate	199
	B. Alkaline Nitrobenzene	202
	C. Alkaline Cupric Oxide	205
	D. Other Metal Oxides	207
	E. Molecular Oxygen	209
6-5.	HYDROGENATION AND HYDROGENOLYSIS	210
6-6.	OTHER REACTIONS OF LIGNIN	220
	A. Nitration	220
	B. Gelation of Lignosulfonates	225
	C. Reaction with Diazo Compounds	227
	D. Demethylation and Degradation Under Pressure	228
	E. Other Reactions	230
	REFERENCES	231

Chapter 7	The Physical Properties of Lignin and Its	
	Preparations	238
	7-1. ULTRAVIOLET ABSORPTION	239
	7-2. INFRARED ABSORPTION	242
	7-3. PHYSICAL CHARACTERIZATION PROPERTIES	245
	7-4. NUCLEAR MAGNETIC RESONANCE	245
	7-5. polarography	247
	7-6. ELECTRON PARAMAGNETIC RESONANCE	247
	7-7. molecular weight	250
	7-8. ABSORPTION AND SWELLING	258
	REFERENCES	260
↑ Chapter 8	The Biological Decomposition of Lignin	263
	REFERENCES	274
Chapter 9	Thermal Decomposition of Lignin	276
	REFERENCES	282
Chapter 10	The Linkage of Lignin in the Plant	284
	REFERENCES	290

Chapter 11 Utilization of Lignin and Its Preparations 292 293 11-1. LIGNIN FROM THE SULFITE PROCESS 294 A. Uses Based on Physical Properties 296 **B.** Uses Based on Chemical Properties C. Lignosulfonates As Raw Materials for Chemical Production 298 **11-2.** LIGNIN FROM ALKALINE PROCESSES 308 A. Uses for Alkali Lignins Based on Physical Properties 308 B. Uses for Alkali Lignins Based on Chemical **Properties** 310 C. Alkali Lignin As Raw Material for Chemical Production 311

REFERENCES

Author Index	317
Subject Index	329

313