CONTENTS

0-1	Keynote Address
0-2	United States Postal Service Efforts to Develop an Environmentally Benign
	Pressure-Sensitive adhesive for Postage Stamp Applications
1-1	Focused High Frequency Ultrasonic Removal of Xerographic Toner from Paper
	Surfaces
1-2	Application of Mineral Processing Techniques for Recycling
2-1	Lessons Learned During the Implementation of the USPS Environmentally Benign
	Pressure Sensitive Adhesive Stamp Program
2-2	Lessons Learned from the Process of 'developing and Evaluating the New Generation
	Pressure Sensitive Adhesives
2-3	Environmentally Benign Pressure Sensitive Adhesive Phase – V Program
3-1	The Greening the Mail Initiative
3-2	Undeliverable Standard Mail Recycling program
3-3	Postage Stamps/Envelope products Program
3-4	Expedited Mail/Package Services
3-5	The First Green Post Office
4-1	A Novel Approach in the Design of an Environmentally Benign Emulsion Adhesive
4-2	Developing Pressure-Sensitive Adhesives that can be Removed during Paper
	Recycling Operations
4-3	Developing Pressure Sensitive Adhesives for Environmentally Benign Postage Stamps
4-4	Development of a Water Based PSA for Postage Stamps
4-5	Pressure Sensitive Adhesives for Markets Driven by Performance and Environmental
	Concerns
4-6	Benign Adhesive Concepts for Postal Service Applications
5-1	High-Speed Automated Optical Sorting of Recovered Paper
5-2	Characterization of Residual Particles by Automated Microscopy and Image Analysis
	- Part I : Presentation of the Equipment
5-3	Bale Impregnation of Recovered Paper-Mill, Pilot, and Laboratory Results
5-4	Bleaching of Colored Paper – Impact of Enzyme Stage and Mixing
5-5	The Use of Ozone in Deinking and Bleaching of Secondary Fibers
6	Symposium Reception & Meet the Speakers
7-1	Silicones, Friend and Foe
7-2	Silicone Coated Release Liners
7-3	Usage of Silicone Release Liner in P/W Dip
7-4	Alternative to Repulping Silicone Coated Release Liners
7-5	Resolutions to Increase Liner Acceptability

8-1	Converter's Experience with Benign PSAs—Panel Discussion
9-1	Method for Evaluating Toner Adhesion on Copier Paper
9-2	Interaction Forces Between Toner Surfaces
9-3	Removal of Fluorescence from Recycled Fibre Using Chlorine Dioxide
10-1	Printers Experience with Benign PSAs—Panel Discussion
11-1	Mill Experience with PSAs
11-2	Success of the Fibreflow® Concert, Experience from a Mill
11-3	Methodologies for Post-Startup Plant Optimization