678.2 NAT

CONTENTS

1.	A historical perspective of the rubber industry	1
2.	Biosynthesis of rubber	35
3.	Latex concentrates: properties and composition	63
4.	Technological processing of natural rubber latex	99
5.	Rheology of raw rubber	141
6.	Compounding	177
7.	Injection moulding	235
8.	Compounding for tyres	283
9.	Blend of natural rubber with thermoplastics	327
10.	Chemical modification of natural rubber	359
11.	Non-sulphur vulcanization	457
12.	Sulphur vulcanization chemistry	511
13.	Oxidative ageing	621
14.	Graft copolymers from natural rubber	679
15.	Strength properties of rubber	731
16.	Friction and wear	773
17.	Diffusion of liquids and solids in rubber	820
18.	Low temperature crystallization of natural rubber	853
19.	Engineering use of natural rubber	892
20.	Vibration isolation and earthquake protection of buildings	938
21.	Physical testing and automation	958
22.	Chemical analysis	989
23.	The evolution of new uses of natural rubber	1038
Index		1078