TABLE OF CONTENTS | | | | Page | |----|---|---------|--| | 1. | INTRODUCTION | | | | 2. | What is natural rubber? Synthetic vis-à-vis natural rubber Value of rubber to man Short Survey of economic position of natural rubber in world | markets | 1
1
2
2 | | 2. | HISTORY | | | | | Discovery in South America; early French work Discovery of vulcanization Establishment of plantations Developments in the twentieth century | | 9
9
9
10 | | 3. | CCMPOSITION AND STRUCTURE OF RUBBER AND LATEX | * * * | | | | Composition of raw rubber and structure of the hydrocarbon Non-rubber components of raw rubber (9) Composition of latex (9) Yellow pigment, W globules and lutoids (10;29) Preservation Sanitation Transportation (30) | | 12
14
14
15
20
21
22 | | 4. | MANUFACTURE OF SHEET RUBBER | | | | | Introduction Latex handling; straining of latex, bulking of latex Coagulating tanks Directions for standardizing latex Converting factors Coagulation Handling of coagulum and cleaning of coagulating tanks Milling of sheet rubber — sheeting batteries Layout of sheeting factories Smoking and smokehouses Operation of tunnel-type smokehouses Smokehouse fires Firewood for smokehouses Woods drying tunnel Type descriptions for RSS rubber grades Baling and packing | | 24
24
25
25
27
28
29
31
34
43
45
45
46
47 | | | Inspection of sheet rubber Packing specifications for RSS | | 47 | | | Various types of baling presses | | . 48 | | 5. | MANUFACTURE OF AIR DRIED SHEET Introduction Method of manufacture Coagulation Sheeting, drying and packing Defects of air dried sheet Colour; mould Dirt and foreign matter Cost of production | | 50 · 50 50 51 51 51 52 52 | | | Page | |--|--| | MANUFACTURE OF CREPE RUBBER Introduction Preservation Coagulation Crepeing batteries Installation and maintenance Safety precautions Crepeing mills Fractional coagulation Lower grade crepes Drying of crepe. Type descriptions for crepe rubber grades Packing specifications International rubber samples | 53
53
53
54
57
57
58
59
59
61
62
62 | | MANUFACTURE OF LATEX CONCENTRATE Introduction Field preservation Layout of a centrifuge factory Reception at factory and flowline Concentration by centrifuging Setting and operation of machines Sludge formation and removal Driving power Upkeep of machines Ammoniation Preaervative systems Storage Testing labotatory Quality standards Sampling and methods of testing for latex contracts | 63
65
65
66
66
69
70
71
72
72
72
72
73
73
73 | | PROCESSING OF SKM LATEX AND SKIM RUBBER Introduction Precautions Processing The trypsin process The Firestone process | 77
77
78
78
79 | | MANUFACTURE OF BLOCK RUBBERS Introduction Advantages of new forms of rubber Technical specifications Production of block rubbers Selection of processing methods The Heveacrumb process Dynat rubber The Decan process The Grana process The Decan remill process Extrusion drying Assisted Biological Process | 83
83
83
90
91
91
96
100
100
101
104 | | | a a | Page | |-----|---|-------------------| | 10. | SPECIALITY RUBBERS | | | | - Viscosity-stabilized rubbers - Superior processing rubber - lyre rubber | 107
108
110 | | 11. | TEXTING OF BLOCK RUBBERS | 3 | | | - Testing station - Sampling and Testing Methods | 111
111 | | 12. | SHIPMENT OF BLOCK RUBBER | 123 | | | | ř | . .