CHAPTERS

1.	Elastomers, Howard L. Stephens	
2.	Engineering Design with Rubber, Daniel L. Hertz and Andrew C. Farinella	28
3.	Rubber Blends, Duryodhan Mangaraj	56
4.	Carbon Black Reinforcement, John T. Byers	
5.	Rubber Processing—Theory and Practice of Mixing and Extrusion, Peter S. Johnson	138
6.	 Additives for Processing Rubber— A. Processing Aids, Howard L. Stephens B. Plasticizers, Stephen E. O'Rourke 	165 178
7.	Vulcanization, Michael A. Fath and Charles P. Rader	2 04
8.	Physical Properties and their Meaning, John G. Sommer	243
9.	Oxidation, Ozonization and Protection of Rubber, Krishna C. Baranwal	29 1
10.	Adhesion of Elastomers, A. N. Gent and G. R. Hamed	315
11.	Tackifying Rubber Compositions, Jay B. Class	346
12.	 Mechanical/Dynamic Properties of Elastomers— A. Mechanical Properties of Elastomers, <i>Eberhard A. Meinecke</i> B. Dynamic Testing and Applications, <i>Thomas F. Reed</i> 	366 387
13.	Thermoplastic Elastomers, Charles P. Rader	415
14.	Millable Polyurethane Rubber (PUR) James Ahnemiller	434
15.	Elastomers for Automotive Applications, William Klingensmith, Thomas Dendinger, Alton McConnell, Paul Standley, John Beckett, Robert Eller, Chris Otterstedt and Joe Walker	455
16.	Design of Experiments Methodology, R. J. Del Vecchio	
17.	Specifying Elastomeric Compounds and Thermoplastic Elastomers by Means of Line Call-Out Systems, John R. Dunn	521
18.	Rubber Compound Analysis and Formula Reconstruction, Dennis Coz and Krishna C. Baranwal	543
19.	Failure Analysis of Rubber Products, Jerry J. Leyden	568
	Index	589

1. ELASTOMERS

HOWARD L. STEPHENS

EMERITUS PROFESSOR OF POLYMER SCIENCE AND CHEMISTRY, DEPARTMENT OF POLYMER SCIENCE. THE UNIVERSITY OF AKRON. AKRON. OH 44325-3909

CONTENTS

		Page
I.	Introduction	1
II.	Historical Background	
III.	Nomenclature	3
IV.	Elastomer Use Classification	5
V.	Production and Consumption	. 17
VI.	Elements of Elastomer Compounding	. 17
VII.	Summary	. 26

I. INTRODUCTION

The function of this chapter is to review the classification of elastomers currently available, their basic properties, availability and consumption, and to summarize rubber compounding in order to provide a background on the materials generally used to prepare commercial products.

II. HISTORICAL BACKGROUND

Although rubber has been in use since the 1840s, it was not until the 1900s that the growth occurred to the extent where rubber is a major commodity today. Table I gives a brief summary on the development of the various elastomers.

It is evident that:

- 1. 99% of natural rubber has been supplied by various plantations during the past sixty years, and this will probably continue to be the major source of natural rubber, with perhaps a small amount supplied by other sources (*i.e.*, Guayule).
- 2. Other than the thermoplastic elastomers, few types or classes of elastomers have been developed since the introduction of hydrogenated nitriles in the 1980's. However, there have been modifications of the existing elastomers to produce some interesting properties.
- 3. NR latex still represents about 10% of the total NR produced. There has been little or no increase in the use of synthetic latexes as replacement for NR latex for many uses.