Contents

Introduction

Global Warming and Energy Saving

Introduction-1 What is Global Warming?1
Introduction-2 Why Energy Saving?4
Introduction-3 How Electric Power Is Used
Introduction-4 Ideal Energy Use10
Chapter 1
Thermal Storage
1-1 How Heat Transfers
1 Conduction 15
2 Convection 15
3 Radiation 16
1-2 Energy Storage Technology17
1 Effective Energy Use 17
2 Classification of Energy Storage 19
1-3 Types of Thermal Storage and Their Classification20
1 Sensible Heat Storage 20
2 Latent Heat Storage 25
Chapter 2
Mechanism of Heat Pump
р
2-1 What is Heat Pump? 29
1 Principle of Heat Pump 29
2 Heat Pump Configuration 31
2-2 Coefficient of Performance - COP - of Heat Pump34
2-3 How to Enhance Performance 37
1 Key to Enhance Heat Pump Performance 37
2 Specific Approaches for Enhancing COP 38
3 Enhancing COP by Increasing Evaporation Temperature 41

viii Contents

2-4 Using Unused Energy Doubles the Benefit	43
2-5 Champion Heat Source Unit in Office Air Conditioning: DB Heat Pump_	47
2-6 Heat Pump and Thermal Storage Tank	52
1 Advantages of Thermal Storage-type Heat Pump 52	
2 Precautions on Employing Thermal Storage-type Heat Pump	53
Chapter 3	
Water Thermal Storage System	
Water Thermal Oldrage System	
3-1 Types of Water Thermal Storage Tanks	57
1 Classification by Stored Water Temperature and Use 57	
2 Classification by Mixing Characteristic of Water in Thermal Storage Tank	
3-2 Multi-connected Mixing Type Thermal Storage Tank	62
1 Number of Tanks 62	
2 Communicating Tube 62	
3 Water-level Difference 65	
4 Other Facilities 67	
3-3 Temperature-Stratified Type Thermal Storage Tank	68
1 Multi-connected Temperature-Stratified Tanks 68	
2 Single/Parallel Temperature-Stratified Thermal Storage Tanks	69
3 Other Facilities 71	
3-4 Procedure for Determining Efficiency of Thermal Storage Tank	71
1 Efficiency Relevant to Thermal-storing Density 71	
2 Efficiency relevant to Heat Loss on Water Tank 73	
3-5 How to Increase Storage of Heat	74
1 Increasing the Number of Thermal Storage Tanks 74	
2 Position of Communicating Tube and Flow Rate	
through Communicating Tube 74	
3 Water Depth and Distributor 74	
4 Increasing Difference in Operating Temperature	
on Secondary Air Conditioning Equipment 75	
5 Decreasing the Stored Heat Temperature 77	
3-6 Temperature Profile	79
1 Temperature Profile of Multi-connected Mixing Type Thermal Storage Tank	
2 Temperature Profile of Temperature-stratified Type Thermal Storage Tank	
3-7 Determining the Heat Source Machine Capacity	82
1 Heat Discharge Patterns of Thermal Storage Tank 82	
2 Determining the Heat Source Machine Capacity 84	
3-8 Configuration, Operation and Control of Water Thermal Storage System_	92
1 Heat Source Machine-related Control 92	
2 Chilled Water Supply System to Load 94	
3 Calculation of Storage of Heat 96	

Contents ix

Chapter 4

Components of Thermal Storage Systems

4-1	Heat Source Machine	99
	1 Selection Considerations 99	
	2 Turbo Chiller 102	
	3 Heat Recovery Turbo Chiller 103	
	4 Air-source Heat Pump Chiller 104	
	5 Water-source Heat Pump 105	
	6 Heating Tower Heat Pump 106	
4-2	Cooling Tower	10.7
	1 Selection Considerations 107	
	2 Cooling Tower Layout Plan 109	
4-3	Pump	110
	1 Classification and Basic Structures 110	
	2 Selection of Pump 110	
	3 Layout Plan 113	
	4 Shaft Sealing Device 114	
4-4	Heat Exchanger	117
	1 Classification and Basic Structures 117	
	2 Selection of Heat Exchanger 118	
	Ice Thermal Storage System	
5 1	Features of Ice Thermal Storage	121
J-1	1 Compression of Tank Volume 121	121
	2 COP of Chiller and Degradation in Capacity 124	
	3 Large Temperature Difference Air Conditioning System 125	
	4 Heat Loss 126	
5-2	Classification of Ice Thermal Storage Systems	126
-	1 Classification by Heat Source Method 126	
	2 Classification by Ice-making Method 127	
	3 Classification by Method of Heat Delivery to Secondary Side 130	
5-3	Selecting a Method and Type for a Given Purpose	132
	1 Construction Method and Building Size/Air-conditioning Method	
	on Secondary Side 132	
	2 Characteristics in Heat Discharge 133	
	3 Considerations for Design IPF 136	
	4 Parallel Use of Ice Thermal Storage and Heating 137	

X Contents

5-4 Design Precautions	137
1 Procedure for Determining Overall System Capacity 137	
2 Specifications of Ice Thermal Storage Systems 138	
5-5 Precautions on Construction Plan	139
1 Matters Relevant to Ordering of Equipment and Construction Plan	139
2 Matters Relevant to Construction and Commissioning 144	
5-6 Outer Melting Type Ice Thermal Storage System	148
1 Outline 148	
2 Ice-making Heat Exchanger 149	
3 Ice Thermal Storage Tank 149	
5-7 Inner Melting Type Ice Thermal Storage System	151
1 Outline 151	
2 Ice-making Heat Exchanger 152	
3 Ice Thermal Storage Tank 153	
5-8 Immersion Capsule Type Ice Thermal Storage System	155
1 Outline 155	
2 Capsule 156	
3 Ice Thermal Storage Tank 156	
5-9 Supercooling-based Type Ice Thermal Storage System	159
1 Outline 159	
2 Ice-making Heat Exchanger 160	
3 Ice Thermal Storage Tank 160	
References 165	
Index 171	
Column	
1 Terms Used to Represent the State of Air 43	
2 Number of Tanks and Mixing Characteristic of Multi-connected Mixing	
Thermal Storage Tanks 60	
3 Water Mixing Mechanism on Thermal Storage Tank 64	
4 Difference in Operating Temperature of Air-handling Unit Coil and	
Number of Coil Rows 77	
5 Partial Load Operation of Heat Source Machine 83	
6 Countermeasures for "Water Dropping" from Pump and Cavitations 114	