iii

TABLE OF CONTENTS

Page

LIST OF	TABLES	v
LIST OF	FIGURES	vi
ABSTRACI	·	viii
INTRODUC	TION	1
MATERIALS		
METHODS		25
1.	Preparation of stock solution and buffer	25
2.	Spectrophotometric titration with native DNA	27
	2.1 Chloroquine with sonicated calf thymus DNA	27
	2.2 Quinacrine with sonicated calf thymus DNA	28
	2.3 Berberine with sonicated calf thymus DNA	28
3.	Spectrophotometric titration with denatured DNA	
	at pH 7	28
	3.1 Chloroquine with denatured calf thymus DNA	28
	3.2 Quinacrine with denatured calf thymus DNA	28
	3.3 Berberine with denatured calf thymus DNA	28
4.	Determination of the T_m	28
	4.1 Calf thymus DNA	28
`	4.2 T _m of DNA in the presence of chloroquine	29
	4.3 T_{m} of DNA in the presence of quinacrine	29
	4.4 T of DNA in the presence of berberine	30
5.	Spectrofluorometric titration with native DNA	30
	5.1 Chloroquine with sonicated calf thymus DNA	30
	5.2 Quinacrine with sonicated calf thymus DNA	30
	5.3 Berberine with sonicated calf thymus DNA	30

~

.

.

Page

RESULTS		31
1.	Spectrophotometric titration with native calf	
	thymus DNA	31
2.	Spectrophotometric titration with heat denatured	
	DNA at pH 7	33
3.	Effect of drugs on the temperature melting	
	profiles of DNA	33
4.	Spectrofluorometric titration with native DNA	60
	4.1 Chloroquine with native calf thysus DNA	60
	4.2 Quinacrine with native calf thymus DNA	6
	4.3 Berberine with native calf thymus DNA	66
DISCUSSI	ION	75
SUMMARY		84
THEORY AND METHOD OF ANALYSIS OF BINDING		
REFERENC	CES	96

ABSTRACT

/ It has been generally believed that quinoline-acridine compounds act as antimalarial drug by interfering with DNA and RNA synthesis in vivo. Many hypotheses have been proposed in order in explain the nature of binding. However, some events still cannot be explained clearly.

In order to clarify the nature of binding, DNA-drug complexes at various pH were studied by spectrophotometric, spectrofluorometric method and thermal strand seperation. The data from spectrophotometric titration was analysed by Scatchard plots.

Intercalation (strong binding) between double stranded DNA and drug can occur without having to involve interaction between positive charge in the ring of drug molecule and negative charge of phosphodiester group of DNA. Also such interaction can occur between the drug molecule and the stacked bases of single-stranded DNA. The hydrogen bindings between side chains of drugs and phosphodiester group of DNA are not necessary for the weak binding process.

It is also an indication that interaction between drug and DNA really consists of strong binding and weak binding by different melting profiles of systems having different DNA to drug ratios.

Moreover, fluorescence studies at pH 3 indicated that the chloroquine may bind to the A-T rich region giving rise to fluorescence enhancement.