Thesis MU 56

2

Į.

CONTENTS

PART I : INTRODUCTION

4

1.1	NATURAL I	RUBBER LATEX	.2
:	· 1 •1•1	COMPOSITION	
	1.1.2	PRESERVATION	
	1.1.3	LATEX CONCENTRATE	
1.2	DRY RUBBI	SR .	6
1.3	SPECIAL P	RUBBER	7
	1.3.1	PALE CREPE	
	1.3.2	SUPERIOR PROCESSING RUBBERS	
	1.3.3	VISCOSITY-STABILIZED RUBBER	
1.4	CHEMICAL	MODIFICATIONS OF NATURAL RUBBER	8
	1.4.1	EPOXIDATION	
	1.4.2	CHLCROGENATION	
	1.4.3	CYCLIZATION	
	1.4.4	DEPOLYMERIZATION .	
	1.4.5	THERMOPLASTIC NATURAL RUBBER	

1. GENERAL BACKGROUND ON NATURAL RUBBER

2. NONRUBBER CONSTITUENTS AND SURVEY OF PREVIOUS STUDIES

ON THEIR EFFECTS ON THE	PROPERTIES OF	NATURAL RUBBER	11
2.1 INORGANIC SALTS			12
2.2 QUEBRACHITOLS	4		12
2.3 LIPIDS	Υ.		13
2.3.1 PLUGGING	INDICES		

2.3.2 VULCANIZATION

2.3.3 ANTIOXIDANTS

2.3.4 PLASTICITY RETENTION INDEX 2.4 PROTEINS 15 2.4.1 WATER ABSORPTION 2.4.2 DYNAMIC PROPERTIES 2.4.3 CURE CHARACTERISTICS 2.4.4 STORAGE HARDENING 2.4.5 STIFFENING 2.4.6 ANTIOXIDANTS 3. METHOD OF REMOVAL OF LIPIDS AND PROTEINS 19 (PREVIOUS STUDIES) 3.1 REMOVAL OF PROTEINS 20 3.1.1 ENZYMIC DEPROTEINIZED RUBBER 3.2 REMOVAL OF LIPIDS 22 3.3 PURIFIED RUBBER 22 4. PLASTICITY AND PLASTICITY RETENTION INDEX 23 4.1 PLASTICITY AND FACTOR AFFECTING THE PLASTICITY OF NATURAL RUBBER 23 4.1.1 PRESERVATIVE 4.1.2 COAGULATION 4.1.3 DILUTION 4.1.4 MATURATION 4.1.5 DRYING TEMPERATURE 4.2 PLASTICITY RETENTION INDEX AND FACTOR

AFFECTING PRI OF NATURAL RUBBER

4.2.1	PRESERVATIVE	
-------	--------------	--

' 4.2.2 COAGULATION

4.2.3 DILUTION

4.2.4 MATURATION

4.2.5 DRYING TEMPERATURE

4.2.6 METALLIC CONTAMINATION

4.2.7 EXPOSURE TO SUNLIGHT

4.2.8 CHEMICAL TREATMENT

ð

PART II : <u>STUDIES ON THE REMOVAL OF NONRUBBER MATERIALS FROM</u> <u>NATURAL RUBBER</u>

1. <u>REMOVAL OF LIPIDS</u>	35
1.1 METHOD OF COLD EXTRACTION OF LIPID FROM	
NATURAL RUBBER	35
1.2 PRELIMINARY EXPERIMENT TO DETERMINE	
APPROPRIATE COMPOSITION OF SOLVENT MIXTURE	
USED FOR THE EXTRACTION OF LIPIDS	37
1.3 PRELIMINARY EXPERIMENT TO DETERMINE	
THE TIME OF EXTRACTION	38
1.4 CONCLUSION	3 9
2. REMOVAL OF PROTEINS	40
2.1 ACID HYDROLYSIS OF PROTEINS USING 6 N HCL	40

2.2 HYDROLYSIS OF PROTEINS AIDED BY LIQUID

2.3 REPEATED PRECIPITATION OF THE RUBBER SOLUTION 43

2.4 SOLVENT EXTRACTION METHOD

SWELLING OF RUBBERS

44

42

2.5	ENZYME TREATMENT	47
2.6	CENTRIFUGATION	49
2.7	CONCLUSION	50

PART III : EXPERIMENTAL

.

.

1

•

PART IV

	1. PREPARATION OF DRY FILM AND DEPROTEINIZED RUBBER	
	(DPNR)	53
	1.1 PREPARATION OF DRY FILM	53
	1.2 PREPARATION OF DPNR	53
	2. <u>CHEMICAL ANALYSIS</u>	55
	2.1 DETERMINATION OF NITROGEN CONTENT	55
	2.2 ASH CONTENT DETERMINATION	57
	2.3 COPPER, IRON AND MANGANESE DETERMINATION BY	
	ATOMIC ABSORPTION SPECTROPHOTOMETRIC METHOD	58
	2.4 GEL DETERMINATION	63
	2.5 AMINO ACID DETERMINATION (NINHYDRIN TEST)	63
	3. PHYSICAL ANALYSIS	64
	3.1 PLASTICITY AND PLASTICITY RETENTION INDEX	64
	3.2 ACCELERATED STORAGE-HARDENING TEST	66
:	STUDIES OF THE EFFECT OF NONRUBBER CONSTITUENTS ON	

THE PROPERTIES OF RAW NATURAL RUBBER

SECTION 1

•

SURVEY OF THE VALUES OF POOF RAW NATURAL RUBBER

.

PRODUCED IN EASTERN THAILAND

SECTION 2

THE EFFECT OF NONRUBBER CONSTITUENTS ON THE PROPERTIES	
OF RAW NATURAL RUBBER	73
2.1 NONRUBBER CONTENTS OF NR SAMPLES USED IN	
THE STUDY .	73 [•]
2.2 EFFECT ON BULK VISCOSITY	78
2.3 EFFECT ON PLASTICITY RETENTION INDEX	83
2.4 EFFECT ON STORAGE-HARDENING	88
2.5 CONCLUSION	95
•	

REFERENCES

STUDIES ON THE REMOVAL OF NONRUBBER MATERIALS FROM NATURAL RUBBER

AND

THEIR EFFECT ON SOME PROPERTIES OF RAW RUBBER

ВΥ

SANTANA THAIYARPIROM

ABSTRACT

Several methods of removal of lipids and proteins from raw natural rubber were studied in order to find appropriate methods, which would allow the effect of these two substances on the properties of both unvulcanised and vulcanised natural rubber to be studied. For the removal of lipids, extraction of raw natural rubber with different proportions of chloroform/ethanol mixture, viz, 1/1, 2/1 and 3/2, were made. The 3/2 mixture was 3/2 mixture was found to be the most suitable since it dissolved negligible amount of the rubber while satisfactorily extracted the lipids. For the removal of proteins, water extraction; repeated precipitation of rubber solution in ethanol; acid hydrolysis of proteins by treatment of raw rubber with 6N HCl, both aided and unaided with solvent (toluene) swelling, extraction of sol-rubber with ether for several days; separation of rubber from nonrubber components by centrifugation of rubber latex at 10,000 g and enzymatic degradation of proteins in rubber latex using papain were carried out. Treatment of the rubber latex with enzyme "papain" for 24 hours followed by acid coagulation of the latex proved to be the best method since it reproducibly removed large amount of proteins (1/2 - 2/3) of the proteins present) with little loss of the lipids and could conveniently be applied for large scale preparation of deproteinized rubber sample.

The most effective method for reducing the protein content was centrifugation method (capable of reducing the nitrogen content from 0.4 -0.5% to well below 0.1% (w/w of rubber). However, besides its effect on the lipid content, this method was not considered a practical method for preparing large amount of sample required for later work. Studies on the effect of nonrubbers on certain properties of raw rubber showed that lipids may act as plasticiser for raw rubber while proteins show no filler effect, in contrast with suggestions from previous studies. Bulk viscosity of the rubber shows no correlation with the gel content. The resistance to thermal oxidative degradation of natural rubber is promoted by nonrubber compounds contained in the lipid extracts but is not affected by metal ions, eg. Cu, Fe, Mn as naturally occuring in the rubber. Storage-hardening of natural rubber was suppressed when the rubbers were extracted with the mixture of chloroform/ethanol, suggesting that either lipids themselves as free amino acids found there in or other unknown nonrubber compounds are responsible for storage crosslinking reactions.