CONTENTS

			Page
ACK	iii		
ABS	TRAC	CT	iv
LIST	C OF 1	ГАBLES	viii
LIST	C OF I	FIGURES	x
СНА	PTE	R	
Ι	IN	FRODUCTION	
	1.1	Statement of the problem	1
	1.2	Conceptual framework	2
	1.3	Objectives	4
	1.4	Research variables	4
	1.5	Scope of the studies	5
	1.6	Definitions	5
	1.7	Expected results	6
II	LIJ	FERATURE REVIEW	
	2.1	Production process of cast iron industry	7
	2.2	Production process of battery industry	15
	2.3	Concrete technology	24
	2.4	Hazardous waste treatment	38
	2.5	Solidification	41
	2.6	Cases study review	47
III	MATERIALS AND METHODS		
	3.1	Form and research planning	54
	3.2	Sampling and testing places	54
	3.2	Materials and equipment	55

CONTENTS

(continue)

	3.4	Chemical substances	56		
	3.5	Methods	56		
	3.6	Diagram of testing	59		
	3.7	Analysis of data	61		
IV	RESULTS AND DISCUSSIONS				
	4.1	Properties of materials	62		
	4.2	Solidification of sludge by cement, sand and water	65		
	4.3	Solidification of sludge by cement, sand waste and water	72		
	4.4	Comparision of lead fixability from two sets of solidification	81		
	4.5	Comparision of cost in two sets of solidification	81		
V	CO	NCLUSIONS AND RECOMMENDATIONS			
	5.1	Conclusions	84		
	5.2	Recommendations	86		
REFI	EREN	ICES	87		
APPI	ENDI	X A DATA OF SAND WASTE	90		
APPI	ENDI	X B METHODS OF ANALYZING	93		
APPI	ENDI	X C CALCULATION OF TREATMENT COST	132		
BIOC	GRAP	НҮ	135		

4136238 ENAT/M : MAJOR : APPROPRIATE TECHNOLOGY FOR RESOURCES
AND ENVIRONMENTAL DEVELOPMENT;
M.Sc. (APPROPRIATE TECHNOLOGY FOR RESOURCES
AND ENVIRONMENTAL DEVELOPMENT)
XEY WORDS : BLACK SAND / SAND WASTE / CURING / LEACHING /
SOLIDIFICATION / COMPRESSIVE STRENGTH
CHANIN LERTKANAVANICHAKUL : SOLIDIFICATION OF SLUDGE
FROM BATTERY WASTE WATER TREATMENT PLANT BY USING SAND
WASTE AND CEMENT. THESIS ADVISORS : USANEE UYASATIAN, M.Eng.
Sanitary Engineering), WINAI NUTMAGUL, Ph.D.(Engineering Science). 135 P. ISBN
974-04-2585-2

This study used sand waste from the casting iron industry to treat lead in sludge from a battery waste water treatment plant. The sand waste was solidified by applying cement based technique and subsequently divided into 2 sets: the set of cement, sand, water and sludge and the set of cement, sand waste, water and sludge. The ratios of sludge were 10, 20, 30, 40 and 50 grams with curing times of 7, 14, 21 and 28 days, respectively. Then, 2 sets of samples were compared for compressive strength and amount of leached lead by using the method as defined by the US.EPA.(Toxicity Characteristic Leaching Procedure, TCLP). In a set that had testing results that complied to the standard, amounts of sludge were added at 60, 70, 80, 90 and 100 grams until the results exceeded the standard. Then, lead fixability and cost of both sets, which had high amounts of sludge, compressive strength value and amount of leached lead under the standard or criteria were compared to identify treatment alternatives.

The study results indicated that compressive strengths in both sets were at a standard level within the curing time of 7 days. The leached lead value of the first set, consisting of 10, 20 and 30 grams of sludge, at curing times of 7-28, 14-28 and 14-28 days, were within standard limits, with costs of 225,250, 112,620 and 75,080 baht/ton of sludge, respectively. Another set had compressive strength increased rapidly at curing times of 7-21 days and constantly at curing times of 21-28 days. The leached lead value of sludge 50, 60, 70, 80 and 90 grams at curing times of 7-28, 14-28, 14-28 and 28 days were within the standard with costs of 10,860, 9,050, 7,750, 6,790 and 6,030 baht/ton of sludge, respectively.

By considering lead fixability, it was found that amounts of sludge treated by sand waste and sand are 90 and 30 grams, respectively. Thus, treatment costs in the set mixed with sand waste was cheaper than using sand mixing (approximately 76.7%) at the same amount of sludge of 30 grams.

Therefore, sand waste can be used to replace sand in the solidification process for treatment of lead from sludge because it is a cost-effective material.

4136238 ENAT/M : สาขาวิชา : เทคโนโลยีที่เหมาะสมเพื่อการพัฒนาทรัพยากรและสิ่งแวคล้อม ; วท.ม. (เทคโนโลยีที่เหมาะสมเพื่อการพัฒนาทรัพยากรและสิ่งแวคล้อม)

ชนินทร์ เลิศคณาวนิชกุล : การหล่อแข็งกากตะกอนจากระบบบำบัคน้ำเสียของโรงงานผลิต แบตเตอรี่โดยใช้ฝุ่นทราชคำและซีเมนต์ (SOLIDIFICATION OF SLUDGE FROM BATTERY WASTE WATER TREATMENT PLANT BY USING SAND WASTE AND CEMENT) คณะกรรมการควบคุมวิทยานิพนธ์ : อุษณีย์ อุยะเสถียร, วศ.ม. (วิศวกรรมสุขาภิบาล), วินัย นุตมากุล, Ph.D. (Engineering Science). 135 หน้า. ISBN 974-04-2585-2

การศึกษานี้ได้นำฝุ่นทรายคำจากอุตสาหกรรมหล่อหลอมเหล็กมาบำบัดตะกั่วในกากตะกอนที่ได้จาก ระบบบำบัดน้ำเสียของอุตสาหกรรมผลิตแบตเตอรี่ โดยนำมาผสมเป็นก้อนหล่อแข็งด้วยเทคนิก cement based ซึ่งแบ่งเป็น 2 ชุด คือ ชุดที่1 ใช้ปูน ทราย น้ำ และกากตะกอน ชุดที่2 ใช้ปูน ฝุ่นทรายคำ น้ำ และกาก ตะกอน โดยใช้ปริมาณกากตะกอนทั้ง 2 ชุด คือ 10 20 30 40 และ 50 กรัม ที่ระยะเวลาบ่ม 7 14 21 และ 28 วัน ตามลำดับ แล้วนำก้อนตัวอย่างทั้ง 2 ชุด กือ 10 20 30 40 และ 50 กรัม ที่ระยะเวลาบ่ม 7 14 21 และ 28 ฉัน ตามลำดับ แล้วนำก้อนตัวอย่างทั้ง 2 ชุดมาเปรียบเทียบความสามารถในการรับแรงอัด และปริมาณการชะ ละลายตะกั่วตามวิธีของ US.EPA. (Toxicity Characteristic Leaching Procedure, TCLP) หากในชุดใดยังให้ผล การทดสอบอยู่ภายใต้เกณฑ์มาตรฐาน ให้เพิ่มปริมาณกากตะกอนเป็น 60 70 80 90 และ 100 กรัม จนกว่าจะ ให้ผลการทดสอบเกินก่ามาตรฐาน จากนั้นเปรียบเทียบความสามารถในการตรึงตะกั่ว และค่าใช้จ่ายของการ ทดลองทั้ง 2 ชุดที่มีก่ากำลังรับแรงอัดผ่านเกณฑ์มาตรฐาน และการชะละลายตะกั่วไม่เกินมาตรฐาน

ผลการศึกษาพบว่า ตัวอย่างทั้ง 2 ชุด มีก่ากำลังรับแรงอัดผ่านเกณฑ์มาตรฐาน หลังจากผ่านการบ่ม ภายในระยะเวลา 7 วัน ส่วนก่าการชะละลายตะกั่วพบว่า ชุดที่1 ที่มีกากตะกอน 10 20 และ30 กรัม ที่ระยะเวลา บ่ม 7-28 วัน 14-28 วัน และ 14-28 วัน ตามลำคับ มีก่าการชะละลายตะกั่วผ่านเกณฑ์มาตรฐาน มีก่าใช้จ่ายเป็น 225,250 112,620 และ 75,080 บาท/กากตะกอน 1 คัน ชุดที่2 ที่มีกากตะกอน 50 60 70 80 และ90 กรัม ที่ระยะ เวลาบ่ม 7-28 วัน 14-28 วัน 14-28 วัน 21-28 วัน และ 28 วัน ตามลำคับ มีก่าการชะละลายตะกั่วผ่านเกณฑ์ มาตรฐาน มีก่าใช้จ่ายเป็น 10,860 9,050 7,750 6,790 และ 6,030 บาท/กากตะกอน 1 ตัน

เมื่อพิจารณาถึงความสามารถในการครึงตะกั่วพบว่าชุดที่มีฝุ่นทรายคำเป็นส่วนผสมจะมีความ สามารถในการบำบัดกากตะกอนได้ถึง 90 กรัม ซึ่งในชุดที่มีทรายเป็นส่วนผสมสามารถบำบัดกากตะกอน ได้เพียง 30 กรัมเท่านั้น และเมื่อกิดก่าใช้จ่ายในการบำบัดกากตะกอน 30 กรัม เท่ากัน การใช้ฝุ่นทรายคำ สามารถประหยัดก่าใช้จ่ายได้ถึงร้อยละ 76.7

ดังนั้นในการบำบัดตะกั่วจากกากตะกอนดังกล่าว สามารถนำฝุ่นทรายดำมาแทนทรายโดยใช้เทกนิก การหล่อแขึงได้ เพราะสามารถตรึงตะกั่วได้ดีกว่าทราย และมีกำใช้จ่ายถูกกว่าด้วย