TABLE OF CONTENTS

.

Part I	:	Constituents of Boesenbergia pandurata	
		(yellow rhizome) (Zingiberaceae)	1
		Abstract	2
		Introduction	3
		Results and Discussions	34
		Experimental	56
		References	67
Part II	:	Additions of lithio chloromethyl phenyl sulfoxide to aldimines and α,β-unsaturated	
		compounds	77
		Abstract	78
		Introduction	80
		Addition of lithio halomethyl phenyl	
		sulfoxides to aldimines	119
		Organosulfur mediated addition to	
		α , β -conjugated systems	133
		Organosulfur mediated cyclopropanation	149
		Addition of lithio chloromethyl phenyl	
		sulfoxide to α,β -unsaturated ketones	165

Addition of lithio chloromethyl phenyl sulfoxide	
to α , β -unsaturated monoesters, mononitriles,	
diesters, cyanoesters, dinitriles, ketoesters	
and an α , β -unsaturated diketone	172
I. Reactions of lithio chloromethyl	
phenyl sulfoxide with conjugated	
monoesters	173
II. Reactions of lithio chloromethyl	
phenyl sulfoxide with conjugated	
nitriles	178
III. Reactions of lithio chloromethyl	
phenyl sulfoxide with dimethyl	
alkylidene malonates	178
IV. Reactions of lithio chloromethyl	
phenyl sulfoxide with alkylidene	
methyl cyanoacetates	199
V. Reactions of lithio chloromethyl	
phenyl sulfoxide with alkylidene	
malononitriles	203
VI. Chemistry of the cyclopropanes	
trans- <u>332</u> , cis- <u>333</u> , trans- <u>334</u>	
and <i>cis</i> - <u>335</u>	205

VII. Reactions of lithio chloromethyl	
phenyl sulfoxide with alkylidene	
derivatives of 1,3-ketoesters	
and a 1,3-diketone	213

Experimental

• •

References

•

277

226

ABSTRACT

PART I

A new chalcone derivative (\pm) -boesenbergin B and the known (±) panduratin A, (±) panduratin B₁, B₂, (±) boesenbergin A together with 2',6'-dihydroxy-4'-methoxychalcone, cardamonin have been isolated from *Boesenbergia pandurata* (yellow rhizome, Zingiberaceae). Spectroscopic studies and x-ray crystallographic analysis have established structure (±)-(E)-1-[5'-hydroxy-7'-methoxy-2'-methyl-2'-(4"-methylpent -3"-enyl)-2'H-1-benzopyran-6'-yl]-3-phenylprop-2-en-1-one for boesenbergin B. A simple synthesis of boesenbergin B has been achieved and its acid catalyzed cyclization has been studied.

ABSTRACT

PART II

The reaction of lithio chloromethyl phenyl sulfoxide with aldimines gave substituted 2-phenylsulfinylaziridines in good yields. The aziridines could undergo 1,3-dipolar cycloaddition reaction with dimethyl acetylenedicarboxylate to give substituted pyrroles in high yields. Presumably, the reaction involved the addition of azomethine ylides derived from the thermal ring opening of aziridines to dimethyl acetylenedicarboxylate followed by the elimination of the phenylsulfenic acid from the intermediate pyrrolines.

The addition of lithio chloromethyl phenyl sulfoxide to 2-cyclohexen-1-one, 2-cyclopenten-1-one and 3-penten-2-one gave only 1,2-addition products. No 1,4-addition products could be detected. However, the reaction of 2-(phenylthio)-2-cyclopenten-1-one with lithio chloromethyl phenyl sulfoxide gave the corresponding 1,4-addition product in good yield.

The reaction of α,β -unsaturated monoesters, diesters, cyanoesters and dinitriles with lithic chloromethyl phenyl sulfoxide gave the expected cyclopropanes as mixtures of isomers in moderate to good yields. α,β -Unsaturated mononitriles failed to give the corresponding cyclopropanes. The reaction with α,β -unsaturated 1,3-ketoesters gave furans, cyclopropanes and *cis*-dihydrofurans as the major products. The reaction with α,β -unsaturated 1,3-diketone gave the corresponding *cis*-dihydrofuran as the sole product.

-78-

The chemistry of dimethyl 3-isopropyl-2-phenylsulfinyl-1,1cyclopropanedicarboxylate and *cis*-4-isopropyl-3-methoxycarbonyl-2methyl-5-phenylsulfinyl-4,5-dihydrofuran was briefly studied. The α -phenylsulfinyl carbanion of the cyclopropane could undergo deuteration, alkylation, addition to aldehydes having no α -hydrogen and ring opening at about 0^oC.

The dihydrofuran could be selectively metallated at methyl group. The resulting carbanion could be alkylated with alkyl halides and underwent Michael addition reaction with α , β -unsaturated diester.